首页 > 范文大全 > 毕业论文

比例的教案冀教版(实用23篇)

比例的教案冀教版(实用23篇)



教学工作计划能够提前预估和解决教学过程中可能遇到的问题。以下是小编为大家整理的教学工作计划范文,供大家参考和借鉴。

苏教版六年级《认识比例尺》数学教案

本节内容是在比的基础上的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。

1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。

理解比例尺的意义。

能熟练解答比例尺的有关问题。

多媒体课件、直尺、地图。

一、情景引入,激发兴趣。

师:北京是我国的首都,同学们,20__年北京奥运会取得了巨大成功,中国的悠久历史,灿烂文化,众多的名胜古迹,感受一下我们祖国的美丽!

生:把它缩小。

师:老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?请出题考考老师。

生1:我想知道北京到上海之间的实际距离。

生2:我想知道我们合肥到北京的实际距离。

(师用地图量出地图中北京到上海、合肥到北京的图上距离,很快回答学生的问题)。

(设计意图:数学应该来源于生活,我在创设情景时把中国和北京搬进课堂,激发了学生的好奇心,又调动了学生探究新知的积极性)。

二、揭示课题,提出疑问。

师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。

今天这节课我们就来认识比例尺。(板书:认识比例尺)。

师:关于比例尺,你想了解什么呢?

生1:什么叫比例尺?

生2:怎样求比例尺?

生3:比例尺是尺吗?

生4:比例尺有几种形式?

(设计意图:揭示本节课题,让处于对新知好奇的学生提出自己的疑问,带着问题有目的性地学习)。

三、实验对比,得出概念。

师:为了解决同学们提出的疑问,我们来做一个实验。

师:我这有一条3米长的线段,你能把它画到自己的练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。

展示学生的画图结果。

小组的同学互相讨论自己是怎么画的。

生1:我用1厘米表示实际3米。

生2:我用3厘米表示实际3米。

师:图上画的1厘米,3厘米叫“图上距离”,3米叫“实际距离”。

(设计意图:把3米长的线段画在本子上,让学生在动手实践过程中初步感受到比例尺的意义,为后面理解与把握“比例尺”的意义奠定基础)。

师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。

展示学生求的比。

师:这些比的前项代表什么?后项又代表什么呢?

生:前项代表图上距离,后项代表实际距离。

师:谁能说说1:300和1:100表示什么意思?

生答。

师:像这样的比叫做比例尺,课件出示比例尺的定义。

师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)。

生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺。

小组的同学互相讨论。

生:缩小。

师:老师这儿有一个机器上的小零件,你们觉得它怎么样?

生:很小。

师:这么小的零件如何把它画在图纸上。

生:把它放大。

师:很好!课件出示机器零件的放大图纸。

师:你知道图中2:1表示什么吗?

生:图中2厘米表示实际的1厘米。

师:你们发现这些数值比例尺有什么相同和不同的地方吗?

相同点:

生1:前项表示图上距离,后项表示实际距离。

生2:比的前项或后项为1。

不同点:

师:为了计算方便,通常把比例尺写成前项或后项为1的比。

出示课本第49页的“做一做”,指名板演,集体订正。

(设计意图:学生通过独立思考、讨论与交流得出比例尺的意义,并学会了怎样求比例尺,从中体会探索的乐趣)。

四、探讨数值比例尺和线段比例尺的互化。

呈现北京市地图让生找出“比例尺”

师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。

师:如何把这幅地图的线段比例尺改成数值比例尺?

小组的同学互相讨论尝试改写。师板书例1.

师:谁能说说改写时要注意什么?

师:怎样把数值比例尺改写成线段比例尺呢?

呈现课本第53页的第1题。学生独立做,集体订正。师强调实际距离的单位要改写成所要求的单位。

(设计意图:将数值比例尺与线段比例尺的互化安排在一起教学,便于学生比较,让学生在尝试性地改写、练习中理解并掌握。)。

五、巩固练习,深化概念。

1、我会判断。

(1)比例尺是一种测量长度的尺子()。

(2)一副图的比例尺是80:1,表示把实际距离扩大80倍()。

(3)比例尺的后项一定比前项大()。

(4)把线段比例尺改写成数值比例尺是1:8000000()。

2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。

3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。

(设计意图:这些练习,既巩固新知,又让学生体验思维的乐趣,既沟通数学与生活的联系,又培养了学生应用数学知识的能力,充分调动了学生学习的积极性)。

六、课堂小结。

通过这节课的学习,你有什么收获?你认为自己的表现如何?给自己打打分。

七、布置学生填质疑卡。

八、作业课本练习八的第2、3题。

苏教版六年级《认识比例尺》数学教案

1.知识与技能:认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

2.过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

3.情感、态度、价值观:体会数学与日常生活的密切联系。

1.理解比例尺的含义。

2.能根据图上距离、实际距离、比例尺中的两个量求第三个量。

教具准备:小黑板、中国地图一张。

学具准备:学生各自准备一张地图。

教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。

一、创设情境(引入新课)。

师:同学们,如果要给我们的教室画一张平面图,它应该是什么形状的?

生:长方形。

师:课前我们量过教室的长、宽各是多少?

(生:长大约9米,宽大约6米。)。

师:请大家在练习本上画出我们教室的平面图。(生画师巡视)。

(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)。

师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?

(学生的答案可能有:长方形长9厘米,宽6厘米。或者是长3厘米,宽2厘米。)。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?

(观点一:都可以,因为这两个图的比都是3:2。观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)。

(生动脑想、动手写)。

引导学生汇报:

(1)直接写上"教室面积大约50平方米。"。

(2)在图上标出"长9米、宽6米。"。

(3)标上"1厘米=1米"。

(4)1厘米怎么能等于1米呢?我认为可以写"1厘米相当于1米。"。

(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)。

师:看来同学们很爱动脑筋,遇到问题会想办法。现在请拿出课前准备的地图,找一找看看上面有无类似的标注?通过汇报,让学生发现地图上有不同的标注。教师板书不同的标注。

(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)。

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。

如:师问比例尺1:600000是什么意思?

生:就是图上1厘米的长度代表现实中的600000厘米。

师:比例尺1:230000是什么意思?

生:就是地图上1厘米的距离相当于现实中的230000厘米的距离。

师:同学们讲得都对,那到底什么是比例尺?

引导得出:

1.比例尺就是一种可以把实际距离放大或缩小的计量单位。

2.我认为比例尺就是图上长度比上现实中长度。

3.图上画的长度与现实距离的比。

4.图上长度与实际距离的比。

师:(规范学生语言)对,比例尺就是图上距离与实际距离的比。

板书:比例尺=图上距离/实际距离。

由上列公式并推导出:图上距离=比例尺x实际距离。

实际距离=图上距离/比例尺。

(让学生按自己的`理解用自己的语言充分描述什么是比例尺,教师再规范语言,这样,一促进了学生思考,二促进了思维外显,三促进了交流。)。

三、实际应用(比例尺的应用)。

1.出示小黑板(笑笑家平面图)。

2.学习课本第30页内容。

(1)学生自己阅读。

(2)学生动手测量笑笑家的平面图的图上距离,计算出笑笑卧室的实际面积。先小组内交流自己的想法,然后全班交流。

(3)独立算出笑笑家总面积,再全班交流。

(4)先让学生理解题意,再独立思考、解决,全班交流。

(5)先尝试解决,再全班交流。

3.谁帮老师算算小黑板上的图是按比例尺多少来画的?求出比例尺并标注。

4.师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上了"比例尺1:100"。

在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

5.完成第31页"试一试"第1题、"练一练"第一题。

四、课堂小结。

师:通过本节课的学习,你有什么收获?还有什么问题吗?

1、创设情境,让学生明确比例尺的用途。

由于学生在生活中对比例尺认识较少并且感受枯燥,所以我在课前拍摄学生照片,利用信息技术做成缩小或扩大的效果,课上展示让学生观察自己照片的变化。接着又介绍现实生活当中,根据需要有时要把实际距离缩小或扩大若干倍以后再画到图纸上的例子。如缩小实例有:中国地图、某个学校平面图。扩大实力有:手表图。通过这些情境的创设,让学生明确比例尺的用途。

2、通过观察、测量、设计平面图的体验过程,使学生理解比例尺的意义。

在学生发现生活中缩小与扩大例子的基础上,我组织学生当设计师进行测量教室周围物品、设计平面图,在体验中发现实际距离长和宽同时缩小相同的倍数就得到了图上距离,进一步引导学生又发现自己画的平面图的图上距离长和宽与实际距离长和宽的比也是相同的,通过说一说对课桌面1比10的理解,抓住了比例尺的意义进行教学。然后又强调了比例尺图上距离、实际距离一般用厘米做长度单位及统一单位的问题。最后,学生计算自己设计平面图的比例尺并说明其意义,更深的理解了比例尺的意义。

3、联系生活实际,让学生在实践中运用。

数学来源于生活,又作用于生活。课堂教学应该体现小课堂,大社会的理念,为此,在学生充分理解了比例尺的概念后,我创设了春游情境给学生看图片和地图,求比例尺和实际距离。在布置课外作业时,我又力求体现了开放性强,联系学生生活实际的特点,让他们调查数据求图上距离并画出来。这些设计培养了学生学数学,用数学的意识,体会到了数学的内在价值。

正比例和反比例的比较人教版六年级教案设计

最近两节课教了正、反比例的有关知识,学生的学习效果不太令人满意,总感觉有这样那样的不足,比如:学生对概念的理解还不是那么深刻;对正、反比例的判断方法掌握得还不够到位等等。其实我深知本课学习内容比较抽象,怎样让这些抽象的概念知识形象化,教学中我注重了强化学生的体验感知,我从多个学生耳熟能详的生活实例入手,让学生充分感悟所学的数学概念。随后还进行了大量的`层次不同的练习。

教学效果与以往相比是有了明显的提高,但总感觉还是那么不太令人满意。练习中学生对两种正反比例的量判断还不是那么熟练,特别是像有时两种相关联的量并不成比例,如人的身高和年龄;圆的面积和半径等等。学生判断时就会犯经验主义的错误,正比例、反比例张冠李戴。反映出学生对概念的掌握还不是那么清晰。

所以我感觉对于这样比较抽象的概念课,今后的教学中我们应该如何突破?如何进一步提高课堂效益,消除学生的认识误区,值得我们好好深思。

正比例和反比例的比较人教版六年级教案设计

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。

教学重点。

理解正反比例的意义,掌握正反比例的变化的规律.。

教学难点。

理解正反比例的意义,掌握正反比例的变化的规律.。

教学过程。

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

(一)成正比例的量。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)12345678……。

路程(千米)90180270360450540630720……。

1.写出路程和时间的比并计算比值.。

(1)。

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

……。

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?

教师板书:商不变。

(二)成反比例的量。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。

工效(个)102030405060……。

时间(时)603020151210……。

2.教师提问。

(1)计算工效和时间的乘积.。

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

(三)不成比例的量。

1.出示表格。

运走的吨数10203040。

剩下的吨数90807060。

总吨数(和不变)100100100100。

2.教师提问。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

(四)结合三组题观察、讨论、总结变化规律.。

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.。

总结:

3.分别概括正、反比例的意义。

4.强调第三组题中两种相关联的量叫做不成比例。

5.教师提问。

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式。

三、巩固练习。

判断下面各题是否成比例?成什么比例?

用比例知识解答应用题人教版六年级教案设计

(一)教学例5(用比例解答下题)。

1.学生读题,独立解答.。

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

(二)反馈.。

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.。

四、课堂总结.。

通过这堂课的学习,你有什么收获?

五、课后作业.。

反比例函数的意义人教版数学九年级教案

1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。

3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。

【学习难点】反比例函数的解析式的确定。

【学法指导】自主、合作、探究。

教学互动设计。

【自主学习,基础过关】。

一、自主学习:

(一)复习巩固。

1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.

2.一次函数的解析式是:;当时,称为正比例函数.

3.一条直线经过点(2,3)、(4,7),求该直线的解析式.

以上这种求函数解析式的方法叫:

(二)自主探究。

提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?

(2)某住宅小区要。

用比例知识解答应用题人教版六年级教案设计

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。

3.通过复习,培养学生的`分析能力、综合能力以及判断推理能力.。

教学重点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学难点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学过程。

一、复习准备.。

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.。

(2)总价一定,每件物品的价格和所买的数量.。

(3)小朋友的年龄与身高.。

(4)正方体每一个面的面积和正方体的表面积.。

(5)被减数一定,减数和差.。

谈话引入:我们今天运用正反比例的知识来解决实际问题.。

冀教版六年级上《比例》教案

第1课小小品评家学科美术年级二年级教学内容《小小品评家》课型造型表现课时1课时教材分析生活中不是缺少美,而是缺少发现美的眼睛。如何让学生拥有一双善于发现的眼睛,引导他们用眼睛去鉴赏美,用心灵去感受美是每一位美术教师都应该研究的课题。“小小品评家”一课,正是要引导学生从美术课程出发,通过“品”――品味与感受生活中的美,“评”――用语言来表达自己眼中的美,来发现、观察、欣赏生活中美好的事物。学生分析课本中展示了一些生活中常见的造型和色彩都比较好看的物品图片,有民间意味浓厚的儿童帽、花篮、钟表、儿童居室等,出示这些作品的目的并不只是为了让学生在课上欣赏,而是从欣赏的内容上提示了学生可以从自己生活中最常见的物品开始寻找美,品评美的活动。教学目标1、能用简单、概括的语言表述自己感受到的生活中的美;2、培养学生对生活中美的关注与热爱之情。课前准备课前搜集的一些生活用品或物品图片教学流程1、从自己的身边寻找一些比较好看的物品,带来向同学们介绍,和大家一起欣赏。2、向学生提些思考问题:“到商店里买衣服,你会怎样去挑选,为什么?”,“在生活中看到美丽的景色,好看的物品你有怎样的感受?”3、引导学生从观察造型和色彩两个方面来说出自己认为好看的物品是如何好看法,(在课本中有一段欣赏评述小闹钟的文字,就是从造型和色彩两方面出发来描述小闹钟到底是怎样看着好看的)通过本课的教学,应该让学生由点及面的感受到生活中的美是无处不在的,人们的生活离不开美。课后反思培养了学生对身边材料的认识和辨识能力,对今后的教学会很有帮助,尤其是对综合材料的驾驭。让学生认识到爱美是人的天性,生活中的美是无处不在的,人们的生活离不开美。第2课我给书本穿花衣学科美术年级二年级教学内容《我给书本穿花衣》课型设计应用课时2课时教材分析本课的内容包含着两个美术活动,一是让学生学会用折纸的方法给书本包皮;二是尝试为包好的书皮设计美观适用的图案。可以说,让美术服务于生活是美术课的目的,“我给书本穿花衣”的过程正是一个锻炼学生运用美术的手段为生活服务的过程。学生分析由于开学初学生的新课本较多,不可能要求学生在一节美术课上把所有的课本都包好,并设计上图案,根据实际情况灵活掌握。在第一课时,准备报纸练习如何包书皮,第二课时,用素描纸包书皮,设计图案。教学目标1、掌握包书皮的一般方法;2、为自己的书皮设计美观适用的图案;3、体验用美术手段美化生活的乐趣。课前准备报纸、素描纸、水彩笔教学流程1、提问:“如书本对我们来说有哪些意义?为什么要给书包上皮”。2、编个“课本的遭遇”故事,讲一讲新课本在不同的同学手里会有什么样的不同遭遇,或编一个“穿新衣的课本”的故事,说一说,课本穿上“新衣”后的心情。3、学习包书皮的方法(让学生自己读图学习)。请学生给大家做介绍。4、引导学生合理选材,并说说为什么这样选。5、设计上实用美观的图案,什么类别的课本穿上怎样的外衣最适合,这一问题来引导学生的设计与制作。6、给数学书包的书皮上应该装饰设计些什么?怎样设计才会又符合数学书的特点,有新颖美观?7、互相展示欣赏。提问:假如你是书本,现在穿上了新衣服,你是什么样的心情?课后总结非常实用的一节课,学生学习兴趣很高。虽然他们包的书皮并不漂亮(为了练习建议孩子们使用的是报纸包书皮),但是还是非常珍惜,都舍不得拆下来。第3课爱美的小鸟学科美术年级二年级教学内容《爱美的小鸟》课型造型表现课时2课时教材分析本课教材由三部分组成:1.鸟的图片,目的是丰富学生的内心感受,教师要很好利用。引导学生从鸟的体态、毛色、花纹等方面重点欣赏。由于版面限制,鸟的图片还需教师在教学时进行补充,从而激发学生热爱大自然的美好情感,提高学生观察、欣赏的能力。2.《鹭鸶》是一幅农民画,其色彩鲜艳、形式感很强,易于孩子接受和理解,有较强的示范作用。学生分析孩子们对鸟更是有着自己独特的感受。鸟儿成为他们童年不可缺少的伙伴。因此,本课题的设立能极大唤起学生学习的兴趣和内心愉悦的体验,也为学生的创作提供较为广阔的想象和个性发挥创造的空间。教学目标1、用自己喜欢的方式表现小鸟,表达自己的情感。2、培养学生观察的能力,锻炼学生大胆运用线条、色彩进行绘画创作的能力。3、通过造型活动,激发学生热爱大自然,热爱美好事物的`情感。课前准备素描纸、水彩笔教学流程1、布置学生到自然中观察小鸟,或搜集有关鸟的图片,或查阅资料,了解鸟的知识、歌曲、趣闻,以备课上交流。(教师准备一些图片、标本、名家美术作品作为补充。)2、创设宽松自由的教学氛围,以小组交流的形式,让学生相互交流搜集到的有关鸟的资料。(你知道哪些鸟的名字?鸟的身体由几部分组成?你认为小鸟美在哪?引导学生从小鸟的形体美、羽毛的花纹、色彩美、飞翔的姿态美)。3、让学生结合生活记忆和有关鸟的故事、谈谈小鸟给自己的印象和感受。4、让学生模仿小鸟的飞行、捕食、嬉戏的情景以及不同小鸟的鸣叫,欣赏表现小鸟的音乐。(重点可以放在对鸟的装饰和美化上,也可以放在大胆想象,组织有情节的画面上。)5、利用对比的方法,看看这只“鹭鸶”与真的鹭鸶有什么不同,找一找画家用了怎样的花纹、线条和色彩去表现。如果让你来装饰和美化你会画些什么。6、补充一些刺绣、剪纸、风筝中的鸟形装饰,引导学生去欣赏,感受其装饰、美化特点,以丰富学生思维,为他们的创作打下良好的基础。7、说说生活中与小鸟发生过的有趣的事情。还可以结合搜集的资料,讲讲小鸟的故事。启发学生大胆想象,引导他们说说自己想象中的小鸟是什么样子?小鸟之间,小鸟和小朋友之间会发生哪些有意思的事情。8、创设“小鸟王国选美比赛”的情景,引导学生进行自评、互评。课后总结:努力在教学中突出装饰色彩,反复强调了线条的规律排列和色彩的规律排列,教学效果非常明显,尤其是2.4班的作品表现十分突出。每班选出比较出色的作品张贴在班内的“成果起跑线”专栏里进行展示,起到交流学习的作用。第4课灵巧的手学科美术年级二年级教学内容《灵巧的手》课型造型表现课时2课时教材分析本课设计了手影游戏、手形添画、手的趣味装饰造型等丰富多彩的活动,为教师实施教学提供了一个较为广阔的空间。教师可以根据学生的兴趣以及学生的接受能力自由选择和扩展。也为学生的创作提供了较大的表现的个性发展空间。本课巧妙地将创作和游戏结合起来,旨在激发学生的学习兴趣,开阔其创新思维,培养其想象力和创造力。学生分析通过一年的美术学习,学生已经累了一定的美术知识,对材料的运用也达到了一定的水平。教学目标1.通过教学使学生有意识地结合手造型,大胆尝试用颜料在手上彩绘出“好朋友”;2.培养学生的动手造型能力和形象思维能力、审美能力以及自我表现表达能力;3.教育学生保护环境,用小小手美化生活。课前准备素描纸、水彩笔教学流程一、导入新课:老师请大家看一段精彩的表演。提问:发现是什么在表演?二、尝试手部造型,想象成好朋友:我们会不会表演?做给你们小组的同学看一看。请几位到投影下来试试,做出不一样的手型。动一动,跟大家打个招呼吧,告诉大家你是谁,配音:真可爱,我们跟他们交朋友好吗?三、彩绘好朋友:1.描述:老师请来了一只小兔。小白兔的耳朵在哪儿?小白兔是什么颜色的?还可以添加些什么?(出示课件小白兔的彩绘过程)剩下的大拇指可以想象成什么?为她准备两根红萝卜。2.你想不想用手做个好朋友,它是什么样子的?告诉你们小组的同学,请几位上台说一说。手型是怎样的?还打算添画些什么?你的朋友一定能受到大家的欢迎。3.大家都有了好朋友,熊老师也不甘示弱,我想做一个很高大、脖子长长的好朋友,小朋友来猜猜他是谁?――小鹿。头上有什么?身上是怎样的?那手型是怎样的?谁帮我想想?四、师生互动学方法:我们一起把小鹿做出来,注意步骤方法。伸出(左)手,扎起袖子,点一点颜料,在手上揉开。换一种颜色画鹿角了,但老师的手指脏了,怎么办呢?在抹布上擦干净,干净的手指才能点其他的颜色,否则颜色就脏了。小鹿的眼睛?点在哪儿好?谁来给小鹿点上。点完了把手指擦干净。真是画龙点睛啊,小鹿活起来了!大家好,我是交朋友聚会的主持人小鹿,我想找一些朋友来参加聚会,大家说我能找到吗?他们在哪儿呢?听说这儿也有新朋友,我们一起去认识他们好吗?欣赏学生作品。五、提出作业要求:小朋友想不想加入到好朋友的队伍里来。要注意一些什么才能把好朋友做好呢?小结:1.先做好手型再添画完成,要跟别人做的不一样;2.换颜色时一定要擦干净手指才能点颜料,四个同学用一盘颜料,看看最后哪个组的颜料盘保持得最干净;3.老师准备了一个大西瓜,西瓜吃完时好朋友也得做完了,小组长把颜料盘收进抽屉,先做完的小朋友在座位上准备好参加聚会的要讲的话或者节目。小朋友们,扎起你的袖子,开始吧!六、老师指导,学生作业。七、组织“好朋友”参加聚会活动。西瓜全吃完了,收起颜料,音乐响起来了,小朋友各就各位。有请主持人出场。1.我是你们的主持人小鹿,交朋。

将本文的word文档下载到电脑,方便收藏和打印。

用比例知识解答应用题人教版六年级教案设计

教学内容:

第十一册p5859,例2、例3,练习十三15。

教学要求:

1、使学生认识按比例分配应用题的结构特点和解题思路,能正确解答按比例分配应用题。

2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

教材简析:按比例分配应用题是把一个数量按照一定的比进行分配。它是平均分问题的发展。本课的教学重点是根据两个量的比推想出各占总数量的几分之几。

教学过程:

一、创设情境,提出问题:

同桌讨论,再回答。

(估计学生回答:1、平均分,就是男生12个,女生12个;2、这样不合理。3、应该按人数来分,男女生人数的比是30:18,化简后是5:3,按这个比例来分较合理。)。

师小结:这样24个实心球按5:3来分,男女生各能分到几个?你能解决这样问题吗?

二、主动探究,归纳方法:

老师把刚才的问题板书成应用题出示,并引导学生一起研究解决刚才的问题:

方法引导:同学们想出了很多方法来解决这个问题,这些方法都可以,具体解题时用什么方法,同学们可以灵活地选择。

小结:我们分东西,可以用平均分,也可以按一定的比例来分。像刚才一样,把一个数量按照一定的`比例进行分配,这种分配的方法叫做按比例分配。(出示课题:按比例分配的应用题)。

三、运用知识解决问题:

(1)初步运用。

师:这样的问题你能解决吗?

(2)出出金点子:

学生先自己做,再交流。

四、总结:

今天,我们学会了哪些知识?并说说我们是怎样学会这些知识的?

五、课堂练习:练习十三14。

用比例知识解答应用题人教版六年级教案设计

2.能够使学生利用正反比例的意义正确、熟练的解答应用题.。

3.培养学生的分析能力、综合能力以及判断推理能力.。

教学重点。

使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学过程。

一、复习准备.。

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.。

(2)总价一定,每件物品的价格和所买的数量.。

(3)小朋友的年龄与身高.。

(4)正方体每一个面的面积和正方体的表面积.。

(5)被减数一定,减数和差.。

谈话引入:我们今天运用正反比例的知识来解决实际问题.。

用比例知识解答应用题人教版六年级教案设计

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.。

教学重点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学难点。

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。

教学过程。

一、复习准备.。

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.。

(2)总价一定,每件物品的价格和所买的数量.。

(3)小朋友的年龄与身高.。

(4)正方体每一个面的面积和正方体的表面积.。

(5)被减数一定,减数和差.。

谈话引入:我们今天运用正反比例的知识来解决实际问题.。

二、探讨新知.。

(一)教学例5(用比例解答下题)。

1.学生读题,独立解答.。

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

(二)反馈.。

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.。

四、课堂总结.。

通过这堂课的学习,你有什么收获?

五、课后作业.。

六、板书设计。

苏教版六年级《认识比例尺》数学教案

1、使学生理解比例尺的意义,学会求比例尺。

2、使学生经历比例尺产生过程和探究比例尺应用的过程提高学生解决实际问题的能力。

3、结合情境使学生体验到数学与生活的密切联系进一步激发学生学习数学的兴趣。

理解比例尺的概念,根据比例尺的意义求出比例尺。

从不同角度理解比例尺的意义。

一、情景导入,明确比例尺用途。

师:同学们,我国国土面积有多大?(960万平方公里)。

大家知道吗?我国的国土面积居世界第三位。这么大的面积,我可以现在就展示出来,大家相信吗?(大屏)我是怎样做到的呢?(缩小)在现实生活中有时根据需要把图形放大或缩小若干倍再画到图纸上。那么大家猜猜:这张图把中国领土缩小了多少倍?(100000000)。

二、归纳概念。

师:1:100000000中的1表示什么?(图上距离)那么,100000000呢?(实际距离)这两个距离是以什么形式出现的呢?(比)我们赋予这个比一个新的名称------比例尺。(板书课题)那么,比例尺怎么求呢??图上距离:实际距离=比例尺(板书)我们还可以把它写成比的形式。(板书)。

理解1:100000000的意义。(图上距离1厘米,表示实际距离100000000厘米。)同桌互说。出示习题。

师:比例尺是一个大家族,他们是一对孪生兄弟。左面的这个比例尺也可以写成分数形式。由于他们是数字组成的,我们称他们为数值比例尺。右面的这个比例尺所表示的意思是图上距离1厘米,实际距离50千米。也可以用它(大屏)表示。他们是由线段组成的,我们称为线段比例尺。在画线段比例尺的时候要注意线段的长度要是1厘米。在最后面的数字末尾加一个单位名称。

师:在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后再画到图纸上。

师问:你知道2:1是什么意思吗?(图上距离2厘米,表示实际距离1厘米)你发现了什么?前项大于后项。这个图形比实际的要大。(比例尺前项比后项大时,就表示放大。)。

师:请看大屏,仔细观察这2个比例尺,你发现了什么??(总有一个数字是1)(小结:为了计算方便,通常把比例尺写成前项或后项是1的比。)。

三、讲解例题。

1、出示例题,指名读题。

2、结合公式“比例尺=图上距离:实际距离”列式。

3、强调:比例尺在计算的时候要统一单位。比例尺没有单位名称。

四、习题练习。

2、填空。

(1)()和()的比叫做这幅图的比例尺。

(2)通常把比例尺写成前项或后项为()的比。

(3)比例尺分()比例尺和()比例尺两种。

(4)比例尺表示图上1cm的距离代表实际距离()km,转化成数值比例尺是()。

3、判断。

(1)所有的比例尺的前项都是1。()。

(2)一幅图的比例尺应根据图纸的大小来确定。()。

(3)一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。()。

(4)地图上量得5cm的距离表示实际400m的距离,这幅地图的比例尺是1:80。()。

(5)一幅地图的比例尺是1:500000厘米。()。

(6)比例尺就是一把尺子。()。

4、请你根据地图中的数值比例尺标出线段比例尺。

5、团结路的实际距离是1800m。

(1)量一量团结路上在图上的距离,求出这幅图的比例尺。

(2)将这幅图的比例尺用线段比例尺表示出来。

6、七星瓢虫的实际长度是5mm。量出下图七星瓢虫的长度,求这幅图的比例尺。

7、附加题。

用1:1000000,1:6000000,1:250000,1:100这四种比例尺画同一种物体,哪一种比例尺绘制的图比较大?总结:这节课你有什么收获?数学是需要大家探索的学科,希望大家多多发现问题,多多解决问题。

反比例教案

教学目标:

知识与技能:

1.结合丰富的实例,认识反比例。

2.能根据反比例的意义,判断两个相关联的量是不是反比例。

过程与方法:

通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

情感态度价值观:

培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。

认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

认识反比例,根据反比例意义判断两个相关联的量是否成反比例。

电脑课件

一、复习引入

1、计算

2、判断下面各题中的两种量是否成正比例?为什么?

(1)文具盒的单价一定,买文具盒的个数和总价。

(2)一堆货物一定,运走的量和剩下的量。

(3)汽车行驶的速度一定,行驶的路程和时间。

3、说说什么是正比例。

师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?

二、出示学习目标

1.能根据反比例的意义,判断两个相关联的量是不是反比例。

2.通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

3.培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。

三、指导自学

师:给你们讲个小故事:

过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!

学习提示:独立思考?

1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”

合作学习小组讨论上述的问题。看书合作学习

1、把25页例

2、例3的表格补充完整。

4、你知道什么是反比例吗?

四、学生自学

五、检查自学效果

让学生说说自学要求中的内容。

师归纳:两种相关联的量,一种量随着另一种量的变化而变化,在变化过程中两种量的积一定,那么这两种量成反比例。

六、引导更正,指导运用

你们还找出类似这样关系的量来吗?”

学生:要走一段路,速度越慢(快),用的时间就越多(少)运一堆货物,每次运的越多(少),运的次数就越小(多)百米赛跑,路程100米不变,速度和时间是反比例;排队做操,总人数不变,排队的行数和每行的人数是反比例;长方体的体积一定,底面积和高是反比例。

七、当堂训练基础练习

1、填空

两种_____的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

(4)圆柱体的体积一定,底面积和高。

(5)小林做10道数学题,已做的题和没有做的题。

(6)长方形的长一定,面积和宽。

(7)平行四边形面积一定,底和高。提高练习

四、小结

通过这节课的学习,你有什么收获?

相关联,一个量变化,另一个量也随着变化积一定

xy=k(一定)

人教版比例的应用比例尺教学设计

教学内容:

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生能用比例方法正确解答比例应用题。

3、培养学生的推理判断能力及勇于探索的精神。

教学重难点:

正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。

教学过程:

一、创设情境,导入新课:

同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)。

1、判断下面每题中的两种量成什么比例关系?

(1)单价一定,总价和数量、

(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

(3)全校学生做操,每行站的人数和站的行数、

2、说说速度、时间和路程这三个量存在怎样的比例关系?

(当速度一定)。

二、探究新知:

1、导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

2、学习例1.(课件出示例题)。

(1)先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

(2)引导学生探究用比例知识解答。

提问:这道题能不能用比例知识来解答呢?

(课件出示问题,让学生思考)。

1、这道题中涉及哪三种量?(路程、时间和速度)。

2、哪种量是一定的?你是怎样知道的?(照这样的`速度就是说速度一定)。

3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)。

(课件出示思考的过程,并齐读)。

(3)提问:根据正比例的意义可以列出怎样的比例?

(教师根据学生的回答板书)。

(4)解这个比例。(教师板书解答过程)。

(5)怎样检验所求的答案是否正确?(把求出的未知数代入原方程,看等式是否相等)。

(6)写出答语。

(7)练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)。

(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

3、学习例2:

(课件出示例题)。

(1)自主探究用比例知识解答。

1合作交流,小组讨论:

题中有哪几种量?这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

2、汇报讨论结果。

老师板书方程并提问:这个方程是比例吗?为什么?

3、师生一起解答。(完成例2的板书)。

4、练习:(课件出示练习题)。

(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)。

5、教师小结。

(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)。

三、知识应用:(出示课件做一做)。

1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

四、作业:练习中的1~4题。

五、课堂小结:

1、这节课我们学会了什么?

(学会了用比例知识解答应用题)。

解比例教案

教材第32页例2、例3,练一练和试一试练习六第6-11题,练习六后的思考题。

1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

一、复习引新

1、做第32页复习题。

让学生先思考可以怎样想。根据思考的方法在括号里填上数。

2、根据比例的基本性质把下面的比改写成积相等的式子。(日答)

4:3=2:1.5x:4=1:2

3、引入新课

在上面两题里,第1题是求比例里的未知项。从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例里另外一个未知数,这种求比例里的未知项,就叫做解比例。

现在,我们就应用比例的基本性质来解比例。

二、教学新课。

1、教学例2

提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做,再试着做做看。

指名一人板演,其余学生做在练习本上。

2、教学例3

出示例题,让学生用比例形式读一读。

让学生解答在自己的练习本上。

指名口答解比例过程,老师板书。

3、教学试一试

出示例3,提问已知数都是怎样的数。

让学生自己解答。

4、小结方法。

三、巩固练习。

1、做练一练

指名四人板演。

2、做练习六第8题。

让学生做在课本上,指名口答。

3、做练习六第10题。

学生做在练习本上。

4、做练习六第11题。

学生口答,老师板书,看能写出多少个比例。

四、讲解思考题。

提问:根据题意,两个外项正好互为倒数,你想到什么?

两个外项的积已知是1,你能求另一个内项吗?

五、课堂小结

这堂课学习的什么内容?应用比例的基本性质怎样解比例?

六、课堂作业。

练习六第6题(1)-(4)题,第7题。

家庭作业:练习六第6题(5)、(6)题,第9题和思考题。

《正比例反比例》教案

1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

实物投影。

一、复习。

要求学生说出成正反比例量的关键,根据学生回答板书关系式。

2、判断下面各题中的两种量是不是成比例,成什么比例。

(1)圆锥的体积和底面积。

(2)用铜制成的零件的体积和质量。

(3)一个人的身高和体重。

(4)互为倒数的两个数。

(5)三角形的底一定,它的`面积和高。

(6)圆的周长和直径。

(7)被除数一定,商和除数。

二、练习。

完成练习十三9~13题。

1、第9题。

观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

2、第10题。

(1)看图填写表格。

(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

(3)启发学生运用有关比例尺的知识进行解答。

3、第11题。

填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

4、第12题。

引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

5、第13题。

让学生小组进行讨论,教师指导有困难的学生。

三、补充练习。

1、a与b成正比例,并且在a=1。。时,b的对应值是0。15。

(1)a与b的关系式是a/b=()。

(2)当a=2。5时,b的对应值是()。

(3)当b=9。2时,a的对应值是()。

2、甲、乙两人步行速度的比为5:6,从a地到b地,甲走12小时,乙要走几小时?

比例的教案

结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。

2.数学思考与问题解决。

经历自学和合作的过程,体验学习的快乐。

3.情感态度。

培养学生自主参与的意识,培养学生观察、分析、概括的能力。

通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。

1.教学难点。

通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。

2.教法学法。

讲授与自学相结合、自主学习法、合作学习法。

多媒体课件、学生自学卡。

一、回顾旧知,复习铺垫。

1.复习学过的有关比的知识。

2.谈话引入新课。

二、引导探究,学习新知。

你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。

写出长与宽的比,并求出比值。完成学习卡的第一题。

(1)交流反馈。

师:像这样表示两个比相等的式子叫做比例。(板书:比例)。

3.组织看书,认识名称。

我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。

4.利用新知,学以致用。

师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?

(小组讨论,交流汇报)。

生汇报。

【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】。

5.内化意义,提高认识。

(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?

(2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”

6.引申应用。

学生自学数学书的16页的问题三。

7.比较“比”和“比例”两个概念。

(1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书p17,看看什么叫比例的项、外项、内项。

指名让学生指出板书中的`比例的外项、内项。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

两个外项的积是80×5=400。

两个内项的积是2×200=400。

“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:

“这个比例的外项是哪两个数呢?内项呢?”

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

三、巩固深化,拓展思维。

(题略)。

四、全课小结,提高认识。

通过这节课的学习,你们都有哪些收获?

比例的教案

简要提示:

本课教学内容是课程标准苏教版六年级(下)第45页的“解比例”。这部分内容是在学生已经理解了比例的意义、掌握了比例的基本性质的基础上进行教学的,通过教学使学生会应用比例的基本性质解比例,并掌握解比例的方法和过程;使学生在应用比例的基本性质解比例的过程中感受不同领域数学内容的内在联系,发展对数学的积极情感。

教学流程:

流程1:教学例5a。

教师:李明同学在学习了图形的放大和缩小后,也在电脑上把下面的一张照片按比例放大。课件出示例5。

教师读题:现在只知道放大后照片的长是13.5厘米,宽是多少厘米呢?你能解决这个问题吗?教师:要求出宽,我们必须先理解“按比例放大”是什么意思,你能说给你的同桌听一听吗?教师:按比例放大的意思呀就是说明这张照片放大前后的相应边长的比能组成比例,例如:放大前的照片的长:放大后的照片的长=放大前照片的宽:放大前照片的长:宽=放大后照片的长:宽。

流程2:教学例5b。

教师:现在放大后的宽不知道,我们可以用什么来表示?

教师:我们就可以假设放大后的照片的宽为x厘米。

课件出示解:设放大后的照片的宽为x厘米。

教师:现在你能列出比例式吗?

教师:我们可以列出这样的比例13.5:6=x:4。

教师:动动脑筋,这个比例中的未知数x你能求出来吗?试一试!

流程3:教学例5c。

课件出示解答过程。

教师:其实这就是根据比例的基本性质两个内项的积等于两个外项的积写的。你看懂了吗?教师(指着):现在我们已经把未知数x求出来了,像这样求比例中的未知项的过程,就叫做解比例。(板书课题:解比例)。

教师:最关键的还是把一个比例写成等式这一步,它就是根据比例的基本性质得来的。

流程4:教学“试一试”a。

教师:你现在会解比例了吗?请大家看课本45页的试一试,请你接着完成它。

流程5:教学“试一试”b。

课件出示解比例的过程。

教师:看一看,你做对了吗?说说把比例写成1.2x=75×0.4的依据是什么?

流程6:完成“练一练”

教师:请同学们继续看课本45页上的练一练,把这3题做在自己的练习本上,看谁做得有对又快。

教师:核对一下,你是这样做的吗?

课件出示三题的解题过程。

流程7:课堂总结。

教师:在列比例式时我们要根据题意,正确找出题目里的比例,列出比例式,在解比例的过程中最重要的是要把比例根据比例的基本性质转化成一个等式,同时计算也要认真、细心。

流程8:完成练习十第6题。

教师:下面我们再来做一些练习。

课件出示题目。

教师:请大家先读一读,然后独立在练习本上完成。

教师:我们可以这样来求未知数。

课件出示解答过程。

流程9:完成练习十第7。

题教师:先读一读,想一想,然后做在练习本上,做完后同桌互相批改一下。

流程10:完成练习十第8题a。

教师:请大家看课本47页第8题,先轻声地读一读。

教师:在练习本上分别写出每杯蜂蜜水中蜂蜜和水体积的比,然后看一看它们能不能组成比例。教师:可以写成这样的比25:200、30:250,它们能组成比例。

流程11:完成练习十第8题b。

教师:大家看第2个问题,题目中的“照第一杯蜂蜜水中蜂蜜和水的比计算:是什么意思?教师:这句话的意思就是300毫升水中应加入的蜂蜜与水的体积的比等于第一杯中蜂蜜与水体积的比。

教师:正确理解了这个条件的意思后,就请大家列比例来解决这个问题。

课件出示解答过程。

教师:核对一下,你做对了吗?

流程12:完成思考题。

教师:下面我们要来挑战一下自己了,有信心吗?请看??

课件出示题目。

教师:大家读一读,想一想,题目中告诉了我们哪些信息?

教师:“两个外项正好互为倒数”是什么意思?由此你能想到什么呢?

流程13:布置作业。

教师:今天的课堂作业是练习十的第5题。希望大家能认真完成。

反比例教案

2.利用反比例函数的图象解决有关问题.

1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;。

2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.

一、创设情境。

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质.

二、探究归纳。

1.画出函数的图象.

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.

解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

上述图象,通常称为双曲线(hyperbola).

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).

学生讨论、交流以下问题,并将讨论、交流的结果回答问题.

1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

2.反比例函数(k0)的图象在哪两个象限内?由什么确定?

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

注1.双曲线的两个分支与x轴和y轴没有交点;。

2.双曲线的两个分支关于原点成中心对称.

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

三、实践应用。

例1若反比例函数的图象在第二、四象限,求m的值.

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.

解由题意,得解得.

例2已知反比例函数(k0),当x0时,y随x的.增大而增大,求一次函数y=kx-k的图象经过的象限.

分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.

解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.

例3已知反比例函数的图象过点(1,-2).

(1)求这个函数的解析式,并画出图象;。

(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上.

解(1)设:反比例函数的解析式为:(k0).

而反比例函数的图象过点(1,-2),即当x=1时,y=-2.

所以,k=-2.

(2)点a(-5,m)在反比例函数图象上,所以,

点a的坐标为.

点a关于x轴的对称点不在这个图象上;。

点a关于y轴的对称点不在这个图象上;。

点a关于原点的对称点在这个图象上;。

(1)求m的值;。

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3时,求此函数的最大值和最小值.

解(1)由反比例函数的定义可知:解得,m=-2.

(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;。

当x=-3时,y最小值=.

所以当-3时,此函数的最大值为8,最小值为.

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

(1)写出用高表示长的函数关系式;。

(2)写出自变量x的取值范围;。

(3)画出函数的图象.

解(1)因为100=5xy,所以.

(2)x0.

(3)图象如下:

说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

四、交流反思。

本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

1.反比例函数的图象是双曲线(hyperbola).

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

五、检测反馈。

1.在同一直角坐标系中画出下列函数的图象:

(1);(2).

2.已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;。

(2)当时,y的值;。

(3)当x取何值时,?

3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

4.已知反比例函数经过点a(2,-m)和b(n,2n),求:

(1)m和n的值;。

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小.

比例尺的教案

使学生理解的含义,会根据线段比例尺图上距离或实际距离。

根据线段比例尺求图和实际距离

一、导入新课

上节我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,除了数值比例尺外,还有线段比例尺呢?这就是我们这节课要学习的内容。

二、新课

2、如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离?让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米,再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?让学生说怎样列式。

50×5.5=275(千米)

3、你能不能把这个地图上的线段比例尺改写成数值比例尺?怎么改写?

三、课堂练习

完成练习十五的第4~8题

四、课堂小结

创意作业:

在地图上找出我们的家乡和北京,并计算出它们离多远。如果用50千米的线段比例尺,你能画出它们在图上的距离吗?同学们试一试。

《正比例》教案

本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。

例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。

试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。

学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。

练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的.比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。

像直观表达正比例关系。

例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照a点表示1小时行80千米b点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。

练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。

例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。

练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。

《比例》教案

1、进一步理解比例的意义和基本性质,能区分比和比例。

2、能正确理解正、反比例的意义,能正确进行判断。

3、拓展思维能力。

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

1填空。

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

小圆的'半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

甲乙两数的比是5:3。乙数是60,甲数是()。

5/x=10/340/24=5/x。

3、完成26页2、3题。

综合练习。

1、a1/6=b1/5a:b=():()。

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例():()、():()。

1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

整理和复习。

解比例。

正反比例正方比例的意义。

正反比例的判断方法。

比例应用题正比例应用题。

反比例应用体题。

比例的教案

1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。2、能运用解比例的方法解决实际问题。教学重点掌握解比例的方法,学会解比例。教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学重点掌握解比例的方法,学会解比例。

教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

上节课我们学习了一些比例的意义,谁能说一说。

1、什么叫比例?

表示两个比相等的式子叫比例。

在比例里,两个外项的积等于两个内项的积。

3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

6︰10和9︰15()。

20︰5和4︰1()。

5︰1和6︰2()。

4、根据比例的基本性质,将下列各比例改写成其他等式。

3:8=15:403×40=8×15。

9/1.6=4.5/0.89×0.8=1.6×4.5。

5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题,)。

1、自学:什么是解比例?请看书第35页。

比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、自主学习例2。

出示思考题:

思考:

(1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。

也就是()的高度:()的高度=1:10。

还有几个项不知道?不知道的这个项我们把它叫做()项。

小组内讨论解决问题,汇报:。

(1)把未知项设为x。

(2)根据比例的意义列出比例:(x:320=1:10)。

(3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。

(4)根据比例的基本性质可以把它变成什么形式?

(5)这变成了原来学过的什么?(方程。)。

(6)让学生自己在练习本上计算完整。课件出示计算过程。

小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。

(1)、用比例的基本性质把比例改写成方程。

(2)、应用解方程的知识算出未知数。

3、教学例3。

出示例3:

思考:

(1)“这个比例与例2有什么不同?”(这个比例是分数形式。)。

(2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

讨论:

(1)解这种分数形式的比例时,要注意什么呢?

(2)在这个比例里,哪些是外项?哪些是内项?

让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。课件出示计算过程。

课件出示:做一做,独立完成后订正。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)。

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)。

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)。

(一)、填空。

1、解比例x:12=2:24第一步24x=12×2是根据()。

2、把0、3:1、2=0、2:0、8可改写成。

()×()=()×()。

3、把4×5=10×2改写成比例是():()=():()。

4、若甲:乙=3:5,甲=30,则乙=()。

5、在比例中,如果两个内项的积上36,其中一个外项是9,

另一个外项是()。

(二)、判断下列的说法是否正确。

1、含有未知数的比例也是方程。()。

2、求比例中的未知项叫解比例。()。

3、解比例的理论依据是比例的基本性质。()。

4、比就是比例,比例也是比。()。

(三)、根据题意,先写出比例,再解比例。

1、8与x的比等于4与32的比。

2、14与最小的质数的比等于21与x的比。

今天你有什么收获?指生说收获。老师小结。

相关内容

热门阅读
随机推荐