首页 > 范文大全 > 毕业论文

比例的意义教学设计(优质20篇)

比例的意义教学设计(优质20篇)



一个好的教学计划可以帮助教师在教学过程中更好地组织教学活动,使学生更容易理解和掌握知识。小编为大家找到了一些优秀的教学计划样本,非常值得大家学习和借鉴。

反比例的意义教学设计

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。2.使学生进一步认识事物之间的相互联系和发展变化规律。3.初步渗透函数思想。

一、谈话导入:

师:咱们一块做几道题判断一下。出示:

1、除数一定,被除数和商。

2、单产量一定,总产量和面积。

3、加数一定,和和另一个加数。

4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据。

师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)。

二、学习。

师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)。

师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流。

学生自己填,在小组活动,师巡视学生台前展示交流。

师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?

指名说,(大屏幕出示红色字)。

师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。

出示表格,明确正比例和反比例的异同点。

师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?

三、练习。

1、书上51页8、9、10题,独立写,集体交流。

2、书上51页11题,指名交流,说理。

四、总结。

师:这节课你有什么收获?指名说。

师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。

正比例的意义教学设计

教学目标:

1、结合丰富的事例,认识正比例。

2、掌握成正比例变化的量的变化规律及其特征。

3、能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学重点:认识正比例的好处和怎样决定两个变化的量是不是成正比例。

教学难点:决定两个变化的量是不是成正比例。

教具准备:课件。

教学过程:

一、导入新课:

出示:路程、单价、正方形的边长……。

根据上面的某个量,你能想到些量?为什么?

在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。

二、新课探究:

(一)、活动一:初步感受正比例关系。

1、课件出示正方形周长与边长、面积与边长的变化状况:

(1)请把表格填写完整。

(2)观察表格,你能发现什么规律?

(群众填表后,独立观察,发现规律,

2、组织学生交流发现的规律,引导学生比较两个规律的异同点。

3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。

所以两个相互依靠的变量之间的关系是不一样的。

(二)、活动二:结合实例体会正比例的好处:

1、课件出示:

(1)将表格填完整。

(2)从表格中你能发现什么规律?

(以小组为单位,选取一个情境进行研究。)。

2、交流汇报:

(三)、活动三:揭示正比例的好处。

1、这2规律有什么共同点?

教师随着学生的回答板书:

都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。

像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)。

3、结合实例说明:

表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。

学生说一说表二的两个量。

4、用字母表示出正比例关系。

(四)、活动四:决定两个量是不是成正比例的量。

1、出示活动一中的表格:

学生自主决定后交流。

2、看来决定两个量是否成正比例务必具备几个条件?

强调:只有具备两个条件,我们才能说这两个量成正比例。

三、课堂练习:

1、根据下表中的数据,决定表中的两个量是不是成正比例:

平行四边形的面积/cm2。

6

12。

18。

24。

30。

平行四边形的高/cm。

1

2

3

4

5

(1)。

买邮票的枚数/枚。

1

2

3

4

5

所付的钱数/元。

0.8。

1.6。

2.4。

3.2。

4.0。

(2)。

2、小明和爸爸的年龄变化状况如下:

小明的年龄/岁。

6

7

8

9

10。

11。

爸爸的年龄/岁。

32。

33。

(1)把表格填写完整。

(2)父子的年龄成正比例吗?为什么?

3、决定下面各题中的两个量是否成正比例,并说明理由。

(1)每袋大米的质量必须,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长和长。

(4)圆的周长和直径。

(5)圆的面积和半径。

四、课堂总结:

透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。

正比例。

一个量随着另一个量的变化而变化。

两个量的比值是不变。

x=ky(k必须)。

教学反思:

1.课堂流程的设计,延展了探究空间。

本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。

2.数学材料的呈现,丰富了体验途径。

为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。

3.学习方式的选取,促进了深度感悟。

教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。

文档为doc格式。

反比例的意义教学设计

1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

掌握成反比例量的变化规律及其特征。

课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

教学步骤教师活动学生活动。

一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

2、判断下面两种量是否成正比例?为什么?

时间一定,行驶的路程和速度。

除数一定,被除数和商。

3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

4、导入新课:

如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充。

二、探究新知1、出示例3的.表格(略)。

学生填表。

2、小组讨论:

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

3、全班交流。

4、完成“试一试”

学生独立填表。

思考题中所提出的问题。

组织交流,再次感知成反比例的量。

根据学生的回答,板书:x×y=k(一定)。

揭示板书课题。

学生填表。

小组讨论、交流。

学生初步概括。

相互补充与完善。

独立填表。

交流汇报。

学生概括。

三、巩固应用1、练一练。

每袋糖果的粒数和装的袋数成反比例吗?为什么?

2、练习十三第6题。

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第7题。

先独立思考作出判断,再有条理地说明判断的理由。

4、练习十三第8题。

先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

5、思考:

100÷x=y,那么x和y成什么比例?为什么?

6、同桌学生相互出题,进行判断并说明理由。

讨论、交流。

独立完成,集体评讲。

说一说。

填一填,议一议。

讨论。

相互出题解答。

四、总结反思。

比例的意义数学教学设计

2、了解比例和比的区别。

3、能根据比例的意义正确判断两个比能否组成比例。

4、探索国旗中蕴含的数学知识,渗透爱国主义教育。

一、创设情境,目标认同。

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把学生举的例子板书出来,并注明比的各部分的名称。

2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。

12:16。

3/4:1/8。

4.5:2.7。

10:6。

学生求出各比的比值后,再提问:你有什么发现?

(4.5:2.7的比值和10:6的比值相等。)。

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)。

二、自主探究,构建新知。

1、学生观察课本情境图,激发爱国情操。

2、板书国旗的长和宽,并提出问题。

天安门升国旗。

仪式:长5米,宽10/3米。

校园升旗仪式:长2.4米,宽1.6米。

教室场景:长60厘米,宽40厘米。

签约仪式:长15厘米,宽10厘米。

师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

3、学生探索,发现问题。

师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

学生自主观察、计算,发现国旗的长和宽的比值相等。

(1)比较学校操场上和教室里的国旗长与宽的比值。

2.4:1.6=3/260:40=3/2。

2.4:1.6=60:40。

(2)在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生回答,教师板书(说明:四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的。)。

像这样表示两个比相等的式子叫做比例。

4、我们也学过不同的两个量也可以组成一个比,如:

一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

指名学生读题。

教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。

这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)。

“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:

第一次所行驶的路程和时间的比是80:2。

第二次所行驶的路程和时间的比是200:5。

让学生算出这两个比的比值。

指名学生回答,教师板书:80:2=40,200:5=40。

让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)。

教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

5、比较“比”和“比例”两个概念。

三、练习反馈,巩固新知。

做p33“做一做”。

让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

四、拓展迁移,升华新知。

比例的意义教学设计

1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)。

师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)。

师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的.意义吗?(学生回答)。

好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)。

(一)数的比例。

课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)。

(二)形的比例。

出示两个具有放大关系的三角形。

师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)。

(三)生活中的比例。

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

1、课本41页第3题(学生独立完成,小组订正交流。)。

2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)。

师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。

师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。

比例的意义教学设计

教科书的例3,完成随后的练一练和练习九的第3—7题。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

理解比例的意义,能正确判断两个比能否组成比例。

在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。

两张照片。

1、预习课本例3,2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。

3、在课本上完成练一练。

教学过程:

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的'意义、各部分名称、基本性质等。)。

还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。

3、什么叫做比例?

1、认识比例。

(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)。

数学中规定,像这样的式子就叫做比例。(板书:比例)。

(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)。

(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

2、学以致用。

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)。

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、交流“练一练”的完成情况。

1、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

2、做练习九第4题。

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

3、做练习九第7题。

(1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

完成后反馈、引导学生进行汇报交流,及时修正自己的答案。

提出疑问,总结全课。

比例意义教学设计

教学目标:1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2.通过动手、动脑、观察、计算、讨论交流等方式,使学生自主获取知识,全面参与教学活动,体验获取获取知识的过程。

3.培养学生在实际生活中发现数学的存在,感受数学的区位和快乐,获得成功体验,增强学好数学的信心,提高学习积极性。适时进行爱国主义教育。教学重点:理解比例的意义。教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。教学过程:。

一、创设情境。

1、播放国歌:

你知道他们在干什么?

你们知道在哪些地方可以看到国旗呢?

校园升旗仪。

3、媒体出示国旗的长和宽,并提出问题。(1)呈现信息:

天安门升国旗仪式:长5米,宽10/3米。校园升旗仪式:长2.4米,宽1.6米。教室场景:长60厘米,宽40厘米。

4、学生探索,发现问题。

(2)学生自主探索:学生自主观察、计算,发现国旗的长和宽的比值相等。(3)通过计算,发现它们的比值都相等,解释说明我国国旗法规定:任何一面国旗的长宽之比都是3:2。,这是对国旗的尊重,进行爱国主义教育。

二、认识比例,理解含义。

1、引出比例,理解比例的意义。

(1)媒体出示操场上的国旗和教室里国旗长和宽,计算出两面国旗的长和宽的比值。

并板书:

2.4∶1.6=3/2。

60∶40=3/2(2)引导写出:指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并板书:2.4∶1.6=60∶40(3)指着这些等式说:“在数学中,像这样的等式就叫做比例(4)学生尝试说说什么叫比例。

(5)共同归纳,得出结论:表示两个比相等的式子叫做比例。这就是我们这节课所学的内容“比例的意义”。(板书课题)请同学们齐读并理解。

2、探讨一:判断两个比是否能够组成比例,关键是什么?(学生讨论,教师参与引导)。

3、探讨二:我们刚才一直在强调比和比例的联系,那么比和比例有什么区别吗?(小组讨论)。

学生从形式上区分:比由两个数组成;比例由四个数组成。

学生从意义上区分:比表示两个数相除;比例表示两个比相等的式子。

三、

巩固应用。

课本做一做(1)选择两题。(学生汇报比值是否相等,所以成不成比例。)(四)拓展练习(课件演示):

1、猜一猜并填空,说说你是怎样思考的?120:6=():2。

2、生活中的比例。

b、分别写出上午、下午时间与路程的比,求出比值,看两个比能否组成比例?

四、

总结。

评价。

1、课件出示:你说我说大家说,说你说我说大家。(前一句偏重是说收获,后一句是互相评价,当然包括评价老师。)。

2、课件出示老师的话:我为你们今天的表现感到骄傲和感动!期待你们更好的表现!

总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识,继续加油哦!板书设计:

表示两个比相等的式子叫做比例。

2.4:1.6=3/2。

60:40=3/2。

2.4:1.6=60:40。

教学反思:

比例这部知识是在学习了比的知识和除法与分数关系的基础上教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。

本节课,为了更好地突出重点,突破难点,按照学生的认知规律,遵循自主性原则,主要让学生在情境中通过观察、计算、比较等的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:

一、创造有效学习情境,激发学习激情。

数学课堂教学需要必要的生活情境,这节课为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是歌曲情境引入;二生活情境和已有知识经验、基础引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式。四是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”,为学生展现出了“活生生”的思维活动过程,充分发扬自主。

二、活用教材。

教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。

反比例的意义教学设计

2.通过观察、比较、归纳,提高学生综合概括推理的能力.。

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。

教学重点。

教学难点。

教学过程。

一、导入新课。

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问。

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量。

(三)教师谈话。

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学。

(一)成正比例的量。

例1.一列火车行驶的时间和所行的路程如下表:

时间(时)。

1

2

3

4

5

6

7

8

……。

路程(千米)。

90。

180。

270。

360。

450。

540。

630。

720。

……。

1.写出路程和时间的比并计算比值.。

(1)。

(2)2表示什么?180呢?比值呢?

(3)这个比值表示什么意义?

(4)360比5可以吗?为什么?

……。

2.思考。

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度。

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。

3.小结:有什么规律?

教师板书:商不变。

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。

工效(个)。

10。

20。

30。

40。

50。

60。

……时间(时)。

60。

30。

20。

15。

12。

10。

……。

2.教师提问。

(1)计算工效和时间的乘积.。

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。

3.小结:有什么规律?(板书:积不变)。

(三)不成比例的量。

1.出示表格。

运走的吨数。

10。

20。

30。

40。

剩下的吨数。

90。

80。

70。

60。

总吨数(和不变)。

100。

100。

100。

100。

2.教师提问。

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的`规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。

(四)结合三组题观察、讨论、总结变化规律.。

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化。

不同点:第一组商不变,第二组积不变,第三组和不变.。

总结:

4.强调第三组题中两种相关联的量叫做不成比例。

5.教师提问。

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式。

三、巩固练习。

判断下面各题是否成比例?成什么比例?

1.一种圆珠笔。

总价(元)。

1.2。

2.4。

3.6。

4.8。

6

7.2。

支数。

1

2

3

4

5

6

单价(元)。

1

2

4

5

10。

支数。

100。

50。

25。

20。

10。

(1)表中有哪两种相关联的量?

(2)说出几组这两种量中相对应的两个数的比。

(3)每组等式说明了什么?

(4)两种相关的量是否成比例?成什么比例?

2.当速度一定,时间路程成什么比例?

当时间一定,路程和速度成什么比例?

当路程一定,速度和时间成什么比例?

3.长方形的面一定,长和宽。

4.修一条路,已修的米数和剩下的米数.。

四、课堂总结。

五、课后作业。

(一)判断下面每题中的两种量是不是成正比例,并说明理由.。

1.苹果的单价一定,购买苹果的数量和总价.。

2.轮船行驶的速度一定,行驶的路程和时间.。

3.每小时织布米数一定,织布总米数和时间.。

4.长方形的宽一定,它的面积和长.。

(二)判断下面每题中的两种量是不是成反比例,并说明理由.。

1.煤的总量一定,每天的烧煤量和能够烧的天数.。

2.种子的总量一定,每公顷的播种量和播种的公顷数.。

3.李叔叔从家到工厂,骑自行车的速度和所需时间.。

4.华容做12道数学题,做完的题和没有做的题.。

反比例的意义教学设计

人教版六年制第十二册第42~43页的内容。

二、教学目标。

(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。

(二)根据反比例的意义,正确判断两种量是否成反比例。

(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

三、教学难点。

正确判断两种相关联的量是否成反比例。

四、教学过程。

(一)情境导入。

1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)。

2.学生对上述问题发表意见。

3.师:今天,我们就来研究这种类型的问题。

(二)探索新知。

将本文的word文档下载到电脑,方便收藏和打印。

比例意义教学设计

教学内容:义务教育课程标准实验教科书六年级下册数学第32至33页“比例的意义”。

教学目标:

2、掌握组成比例的必要条件和方法。

3、会运用比例的意义组成比例,检验组成的比例是否正确,能用两种形式写比例。

4、在比例意义的学习探究中,培养学生的观察、比较、分析、推理、概括能力和勇于探索的精神。

5、进行爱国主义教育。教学重点:理解比例的意义;

教学难点:掌握组成比例的条件,能正确组成比例;教学关键:会运用比例的意义检验两个比是否能组成比例。教具准备:多媒体课件教学过程:

(一)复习准备。

1、谈话导入。

师:同学们,上学期我们学习了比,这节课我们继续学习和比有关的知识——比例。在学习之前,我们先来复习有关比的一些知识。

2、学生回忆:什么是比值?怎么求一个比的比值?

3、计算下面每组中两个比的比值。

6:10和9:156:4和:0.6:0.2和:20:5和1:4师:观察以上几组比中有没有比值相等的比?如果有请找出来。教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们可以用等号连起来。

(板书:6:10=9:156:4=:)。

(二)探究比例的意义出示例1插图。

师:同学们,看这四副图,你们发现了吗?在不同的场合国旗的大小一样吗?(不一样)。

师:请同学们写出每面国旗长和宽的比,并计算出比值。

121312133414。

(每面国旗宽和长的比;每两面国旗的长之比;每两面国旗的宽之比等。)。

这些比能组成比例吗?学生写比,并写出比例。

1、思考:比例由几个比组成?任意两个比都能组成比例吗?为什么?

两个比能否组成比例的关键是什么?

2、判断练习:

(1)、下面每组中两个比能组成比例吗?为什么?1∶5和3∶1210∶20和30∶60(2)、判断下面每个式子是不是比例,为什么?10∶11„„„„„„„„„„„()8∶10=0.8„„„„„„„„„()7∶14<28∶14„„„„„„„()。

3、写出两个比值是3的比,并组成比例。

4、比例是由比组成的,小组同学说一说比和比例有什么区别?小结:从形式上区分,比由两个数组成,是一个式子;比例由四个数组成,是一个等式。

比例的意义教学设计

2、了解比和比例的区别与联系。

2、在已有知识的基础上,结合实例引出新的知识。

情景图、多媒体课件、习题卡。

出示课题:比例。

看到课题你想到了以前学过的什么知识?(生1,生2等回答)。

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5。

求完比值你觉得哪些比有联系?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

(师趁机板书在黑板右上角)。

本节课我们就来完成这两个目标:

【设计意图:对学生同时进行思想品德教育和爱国教育】。

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的'比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)。

(二)自学。

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享。

谁愿意把你的结果和大家分享?师相机板书。

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…。

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…。

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

擦去开始板书中的“?”并把比例可用分数形式表示板书出来。

师:你能说一说组成比例要具备哪些条件吗?

生:…。

生:…。

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21。

(2)15∶3和60∶12。

1、把下面的式子进行归类:

(5)72:8=3x3(6)3.6:6=0.6。

比:()。

比例:()。

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()。

(2)、如果两个比可以组成比例,那么这两个比。

的比值一定相等。()。

(3)、比值相等的两个比可以组成比例。()。

(4)、0.1∶0.3与2∶6能组成比例。()。

(5)、组成比例的两个比一定是最简的整数比.()。

1、写出比值是7的两个比,并组成比例。

2.12的因数有(),从12的因数中挑选4个数组成比例是()。

今天这节课你有什么收获?

第2.3题。

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5。

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:。

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

反比例的意义教学设计

1.知识与技能。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

2.过程与方法。

学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。

3.情感态度与价值观。

经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。

教学重点。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

教学难点。

反比例函数解析式的确定。

教学过程。

一、创设情境,导入新课。

问题1:(课件展示)。

问题2:(课件展示)。

问题3:(课件展示)。

下列问题中,变量间的`对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。

(2)某住宅小区要种植一个面积为1000o的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。

(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。

二、观察思考,明晰概念。

1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?

2.这些函数关系式与正比例函数、一次函数有何不同?

3.这些函数关系式有什么共同的特征?

4.各关系式中两变量之间有什么关系?

5.你能归纳出反比例函数的概念吗?

通过回答以上问题,师生共同总结反比例函数的概念。

三、小组讨论,领悟概念。

1.反比例函数关系式中有几个变量?

2.变量之间存在什么关系?

3.反比例函数还有其他形式吗?若有请指出。

4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?

四、内化新知,拓展应用。

1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。

2.已知y是x的反比例函数,且当x=2时,y=6。

(1)写出y与x的函数关系式。

(2)求当x=4时,y的值。

3.当x为何值时函数y=x-2a-4是反比例函数?

4.已知函数y=y1+y2,与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。

(1)求y与x的函数关系式。

(2)当x=-2时,求函数y的值。

五、课堂练习。

师生共同完成教课书第40页的练习题。

六、课堂小结。

1.通过本节课的学习你对反比例函数有怎样的认识?

2.反比例函数与正比例函数的区别有哪些?

七、作业布置。

教材中本节习题17.1第1、2、4题。

(责任编辑赵永玲)。

《比例的意义》教学设计

教学内容:

九年制义务教育小学数学教材第十二册第1、2页,练习一第1――3题。

教学目标:

1、使学生理解并掌握比例的意义和基本性质,学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2、认识比例的各部分的名称。

3、培养学生的观察能力、判断能力。

学法引导:

引导学生观察、讨论、试算,探究比例的意义和比例的性质。

教学重点:

《正比例的意义》教学设计

本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。

学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。

对比新旧教材,我们不难发现新教材在保留原来表格的基础上,去除了表格下方的三个小问题,取而代之的是“体积和高度的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,例1通过研究圆柱形杯子的体积、底面积与高这三个数量的依存关系,使学生理解正比例的意义。教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。另外,增加了认识正比例关系的图像,例2让学生体会正比例图像的特点和作用,加深对正比例的认识。

教材的改动是为了让学生自己去寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的'统一,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,(从这一句可以看出,为了提高课堂教学效率,在修改稿中不再回避而是接纳和提倡接受学习)学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面:

一、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的组织者与引导者。

二、努力实现扶与放的和谐统一,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。

基于对教材的理解和分析,我将该节课的教学目标定位为:

知识与技能目标:帮助学生理解正比例的意义。用表示变量之间的关系,初步体会正比例图像的特点和作用,加深对正比例的认识。

过程与方法目标:通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。

情感目标:学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。

《比例的意义》教学设计

(1)知识与技能:使学生理解比例的意义,能应用比例的意义判断两个比能否构成比例。

(2)过程与方法:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

(3)情感、态度与价值观:培养学生在实际生活中发现数学的存在,并在实际生活中能感受到数学的趣味,提高学生学习数学的积极性。

比例的意义,应用比例的意义判断两个比是否能构成比例。

多媒体课件。

一、创设情境,导入新课。

同学们,当你看到这面迎风飘扬的五星红旗时,你会想到什么?(生自由汇报,师相机引出儿歌《国旗国旗真美丽》)一首《国旗国旗真美丽》仿佛让我们回到了一年级刚刚入学的那会儿,而如今,一转眼我们已经是六年级毕业班的学生了,希望你们能好好珍惜和利用小学阶段的最后一个学期加强学习,为进入初中继续学习数学知识打下良好的基础。

五星红旗是庄严而美丽的,并且它与我们的数学也有着密切的联系,今天就让我们一起去研究国旗中的数学知识:比例(板书课题:比例)。

从课题中我们不难看出,比例和我们以前学过的哪个知识有一定的关系(比)你们还记得比的意义吗?(两个数相除又叫做两个数的比。)如何求比值?(比的前项除以后项所得的商叫做比值。)。

好,下面我们就先来用比的知识解决几道国旗中的`数学问题。

二、以比值为引线,认识比例。

你在哪些地方看见过国旗?

问题:

1:你能说一说这四幅图中国旗的相同点和不同点吗?

2:你们想知道这些国旗的长和宽各是多少吗?

哪个小组研究的是操场上的国旗与教室里的国旗各自长和宽的比?

(请一组学生板演汇报,教师小结板书:两个比相等)。

这两面国旗长和宽的比值相等,我们可以用等号将这两个比连接起来。(板书:2、4∶1、6=60∶40)。

指着这组相等的比说:像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是“比例的意义”(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答:等式;有两个相等的比)。

(教师再强调:一定是比值相等的两个比才能组成比例。)。

2、寻找国旗中的其他比例。

师:你还能从四面国旗中找出哪些比例?

(学生写在练习本上,然后汇报。教师点击课件)。

3、介绍比例的第二种表示方法。

师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:=)。

4、强调比例的计算单位要统一。

出示课件,提出问题,学生判断。

小结:在比例的计算中,单位要统一。

5、区分比和比例。

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流:你觉得比和比例有哪些区别?)。

形式不同:比由两个数组成;比例由四个数组成。

意义不同:比表示两个数相除;比例表示两个比相等的式子。

三、自主尝试,巩固比例。

(一)数的比例。

课本33页“做一做”第1题。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)。

(二)形的比例。

(三)生活中的比例。

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

课本36页第1题(学生独立完成,小组订正交流。)。

(四)拓展中的比例。

写出比值是5的两个比,并组成比例。

四、全课小结。

通过这节课的学习,你了解了比例的哪些知识?你还想研究比例的什么知识?

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

《正比例的意义》教学设计

1使学生理解什么是相关联的量。

3学会判断两个量是否成正比例关系。

一、导入。

师(板书:关联):知道关联是什么意思吗?

生:指事物之间有联系。

生:也可以指事物之间相互影响。

师:对,关联就是指事物之间发生牵连和影响。

师:能举一些生活中相互关联的例子吗?

生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。

生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

二、新授。

师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

师:从这个表格中。你还知道什么?

生:答对一题得10分,答对两题得20分,答对三题得30分……。

师:表中有哪两个量?它们的关系怎样?

生:答对的题目与最后的成绩,它们是两个相关联的量。

师:你们能够从中发现什么规律?

生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

师:还能发现什么呢?

生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。

师:刚才这位同学在算出比值的时候,你们发现了什么?

生:不管怎样,它们的比值不变。

师:这个比值实际上就是什么呀?(板书:每题的分数)。

师:你能用一个关系式表示吗?

板书关系式:成绩/答对的题目=每题的分数(一定)。

师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。

1表中有()和()两种量。

2路程是怎样随着时间的变化而变化的?

3任意写出三个相对应的路程和时间的比,并算出它们的比值。

4比值实际上表示(),请用式子表示它们的关系。

(学生交流汇报,师板书关系式)。

(结合学生的.发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。

反思:

从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

比例的意义教学设计

人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。

1、结合具体情境,通过计算,能说出比例的意义。

3、通过观察、比较、小组讨论说出比和比例的区别。

比例的意义,应用比例的意义判断两个比是否能构成比例。

教学过程。

一、复习旧知、导入新课。

同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。

二、比较分析,探究新知。

1、出示情景图,说一说各幅图的情景。

第一幅:xx前的升国旗仪式。

第二幅:学校每周一的升旗仪式。

第三幅:教室前面的红旗。

第四幅:谈判桌上的红旗。

(对学生进行爱国主义教育)。

问题:1:你能说一说这四幅图中国旗的相同点和不同点吗?

2:你们想知道这些长和宽是多少吗?

出示国旗的长宽数据。

3:请同学们观察、计算一下,国旗的长和宽的比值是多少?

3板书:2.4:1.6=2360:40=2。

4、探求共性,概括意义。

师:比较一下,你什么发现?

师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

生:用等号(师把左右两个中间板书=)。

生:表示相等的两个比。

生:表示两个比值相等的比。

(师板书:比相等)。

师:像这样表示两个比相等的式子叫做比例。板书。

同桌互相说说。

这个就是今天我们学习的——比例的意义(板书:比例的意义)。

三、合作探究,进一步理解比例。

1、探索组成比例的条件。

师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?

(教师再强调:一定是比值相等的两个比才能组成比例。)。

2、寻找比例。

师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶1060∶40=5∶)。

3、介绍比例的第二种表示方法。

师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:)。

4、区分比和比例。

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)。

从形式上区分:比由两个数组成;比例由四个数组成。

从意义上区分:比表示两个数相除;比例表示两个比相等的式子。

四、根据意义,判断比例。

生:看比值是不是相等。

1、完成“做一做”。

下面哪组中的两个比可以组成比例?把组成的比例写出来(见书上做一做)。

3、反馈:(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。

4、想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

5、处理做一做第二题。

6、处理练习六第一题。

四、目标检测。

1、判断:

(1)、有两个比组成的式子叫做比例。

()。

(2)、如果两个比可以组成比例,那么这两个比的比值一定相等。

()。

(3)、比值相等的两个比可以组成比例。

()。

(4)、0.1:0.3与2:6能组成比例。

()。

(5)、组成比例的两个比一定是最简的整数比。

()。

2、写出比值是5的两个比,并组成比例。

3、练习六第二题。

五、总结。

师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。

操场上的国旗:2.4∶1.6=1.5。

教室里的国旗:60∶40=1.5。

2.4∶1.6=60∶40也可以写成。

表示两个比相等的式子就叫做比例。

《比例的意义》教学设计

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质。

3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

理解并掌握比例的基本性质。

探究发现比例的基本性质。

本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

教学步骤教师活动学生活动。

一、复习引新。

导入新课。

1、找找比比:

(判断下面的比,哪些能组成比例?把组成的比例写出来。)。

3:518:300.4:0.21.8:0.9。

5/8:1/47.5:32:89:27。

学生独立完成,重点说说判断过程。

2、今天我们继续研究比例的有关知识。

学生练习。

学生回顾判断两个比能否组成比例的方法。

二、认识比例。

探索规律1、认识比例各部分的名称。

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3:5=18:30学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3:5=18:30。

内项。

外项。

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30。

2、教学例4。

(1)理解题意,信息搜索:

提问:你能根据图中的`数据写出比例吗?

(2)、学生写不同比例:

引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

(3)、学生探索规律。

学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)。

(4)、写比例,验证规律:

是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。

(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

4、练习:“试一试”判断能否组成比例。

出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

学生练习:找出比例中的内项和外项。

6:5=36:30。

4:7=21:49。

学生自主表达,图中有哪些数据信息?

学生独立思考,再小组交流。

学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()。

学生分析哪两个数是外项,哪两个数是内项。

比较理解比例的基本性质。

学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

三、巩固练习。

拓展提高。

1、做“练一练”

使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在()里填上合适的数。

5:3=():6。

4:()=():5。

3、做练习十第1、2题学生尝试练习后交流讨论。

先让学生尝试填写,再交流明确思考方法。

四、全课小结。

总结反馈通过今天的学习,你有哪些收获?

把你发现规律的方法介绍给朋友、亲人。

五、课堂作业练习十3、4题。

《正比例的意义》教学设计

1、教学内容:人教版六年级下册正比例。

2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

3、教学重点,难点、关键:

教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

4、教学目标:

根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的'教学目标。

知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

本节课我安排了六个教学环节。

第一个环节:游戏导入,激发兴趣。

用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

第二环节:引导观察,启发思考。

教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

第三环节:创设情景,观察实验。

用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

第五环节:巩固练习,拓展提高。

第六环节:全课小结。

在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

《比例的意义》教学设计

苏教版p40页例3、练一练及练习九的3----7题。

1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

一、创设情境,导入新课。

师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)。

师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)。

师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)。

好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的.)。

2厘米。

3.2厘米。

4.8厘米。

3厘米。

6.4厘米。

4厘米。

9.6厘米。

6厘米。

二、新授。

(学生板演,观察到比值相等,教师板书:两个比相等)。

师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)。

教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)。

(教师再强调:一定是比值相等的两个比才能组成比例。)。

师:你还能从四面国旗中找出哪些比例?

(学生写在练习本上,然后汇报。教师板书)。

师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)。

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗。

学生从形式上区分:比由两个数组成;比例由四个数组成。

学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

三、巩固应用。

(一)数的比例。

课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)。

(二)形的比例。

出示两个具有放大关系的三角形。

3厘米。

5厘米。

4.5厘米。

7.5厘米。

师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)。

(三)生活中的比例。

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

1、课本41页第3题(学生独立完成,小组订正交流。)。

2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)。

四、总结。

师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。

师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。

五、课堂检测。

1、下面哪些组的两个比可以组成比例?如果能,在()打对号。

10:2和35:42()0.6:0.2和:()。

:4和3:():和12:8()。

2、在下面的六个比中,选择两个比组成比例。

::4:71.4:2.8:10:15。

3、写出比值是的两个比,并组成比例。

六、布置作业。

课本练习九4题、7题。

相关内容

热门阅读
随机推荐