首页 > 范文大全 > 毕业论文

高中数学教学设计案例(优质18篇)

高中数学教学设计案例(优质18篇)



教学计划是教师为了实现教学目标而制定的有组织、有步骤的教学活动的安排。接下来,将为大家分享一些教学计划的参考资料,希望能够对您的教学工作有所帮助。

数学教学设计案例

科目。

数学。

年级。

五年级。

教学时间。

执教者。

王冬梅。

一、教材内容分析。

《组合图形的面积》是义务教育课程标准实验教科书(北师大版)五年级上册数学第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级上册75——76页的内容,这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。设计理念:

数学课的教学应当以注重引导学生亲历数学知识探究过程、突出思维训练为主要目标。主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。

二、教学目标分析。

1、知识与技能:使学生理解组合图形的含义,理解并掌握组合图形的计算方法,并能正确地计算组合图形的面积,并能运用所学的知识,解决生活中有关组合图形面积的实际问题。

2、过程与方法:自主探究、合作交流。让学生在自主探索的基础上进行合作交流,培养学生的观察能力、动手操作能力和逻辑思维能力。

3、情感态度与价值观:结合具体的题例,使学生感受到计算组合图形面积的必要性,产生积极的数学学习情感。

三、

教学重、难点。

重点。

教学重点:学生能够通过自己的动手操作,掌握用割、补法求组合图形面积的计算方法。

难点。

教学难点:割补后找出相应的计算数据解决问题。

四、学习者特征分析。

(1)多媒体教学法。

动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

六、教学环境及资源准备。

实验(演示)教具。

图画,图片,教科书,粉笔,教学支持资源。

课件,投影,幻灯片。

网络资源。

多媒体教室。

七、教学过程。

教师活动。

学生活动。

设计意图及资源准备。

创设情境、复习导入。

让学生猜一猜(学习过的平面图形),说一说(面积公式),看一看(给出的图案像什么)。

学生独立与小组合作交流解决组合图形面积计算问题。小组汇报学习情况。

汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:。

3、师生。

总结。

分割法填补法。

学生合作交流,探讨解决组合图形面积计算的方法。板书并计算面积总结方法,学以致用。

这一环节中我真正的转变们了教师的角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的掌握“分割法”和”添补法”这两种计算方法.让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。

综合实践、学以致用。

1,为了巩固新知,我设计了不同层次的练习,使不同层次的学生都有提高。前面情景导入时几个生活中的数学问题解决了一个,剩下的我放在练习里。2设计一个组合图形的草坪,面积大约45平方米。

学生在画图程序中,自己设计出组合图形的图画,并涂上漂亮的颜色。让学生把掌握的知识拓展到实际生活中去。

总结收获、小结全课。

学习这节数学课,你有什么收获,或者有什么心得?

学生自由说,畅所欲言。

学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。

教学过程流程图。

形成性检测与评价。

1、是否能够通过自学、掌握平面图形的面积公式。

2、是否能正确计算简单的基本图形的面积。

3、是否能够积极参与课堂上的学习活动。

4、是否能够与老师同学交流。

心得体会。

5、是否能够倾听他人发言。

6、是否能够理解,掌握组合图形的面积计算。

九、教学总结与反思。

“组合图形的面积”是北师大教材五年级上册第五单元第一课时,是在学生积累了一定的学习经验,认识了一些平面图形的基础上安排学习的。本节课是以学生已经学习过的长方形、正方形、平行四边形、三角形和梯形等基本图形面积计算为基础,结合实际情境和具体的图形来探索组合图形面积的计算方法,不仅能够巩固已学的基本图形面积的计算方法,培养学生的分析问题和解决问题的能力,而且也有利于发展学生的空间观念,提高学生的综合能力。在本节课的教学过程中,我注重了以下几个方面:

1、创设情景,激发学习情感。

好的开始等于成功的一半。本课一开始我就从谈论生活中的各种组合入手,进而出示七巧板拼图让学生观察得出这些图形都是一些组合图形,使学生充分感受到数学与生活的密切联系。为下一步探究组合图形做好铺垫。

2、注重方法的指导与总结。

3、问题来源于学生,回归于学生。学生在探索的过程中,放手让他们拼图,画图,分割图,并自行解决提出的问题。让学生在拼一拼、画一画,分一分的活动中,初步形成“组合”的概念,从而对“组合图形”的意义有了更深一层的理解。

新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。本节课的教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。

当然也还有很多细节的地方需要改进,比如教师语言的精练度,课堂教学时间的掌控、学生操作的方式,以及汇报的形式等等,这都有待于在今后的教学中进一步加以完善。

高三数学教学设计案例

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:

一.复习准备。

1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课。

引入:1“一尺之棰,日取其半,万世不竭。”

2细胞分裂模型。

3计算机病毒的传播。

由学生通过类比,归纳,猜想,发现等比数列的特点。

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。

注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?

4以及等比数列和指数函数的关系。

5是后一项比前一项。

列:1,2,(略)。

小结:等比数列的通项公式。

三.巩固练习:

1.教材p59练习1,2,3,题。

2.作业:p60习题1,4。

第二课时5.2.4等比数列(二)。

教学重点:等比数列的性质。

教学难点:等比数列的通项公式的应用。

一.复习准备:

提问:等差数列的通项公式。

等比数列的通项公式。

等差数列的性质。

二.讲授新课:

1.讨论:如果是等差列的三项满足。

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足。

2练习:如果等比数列=4,=16,=?(学生口答)。

如果等比数列=4,=16,=?(学生口答)。

3等比中项:如果等比数列.那么,

则叫做等比数列的等比中项(教师给出)。

4思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

三.巩固练习:

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。

解(略)。

列4:略:

练习:1在等比数列,已知那么。

2p61a组8。

高中数学教学设计案例【】

1.把握菱形的判定。

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3.通过教具的演示培养学生的学习爱好。

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计。

观察分析讨论相结合的方法。

三、重点·难点·疑点及解决办法。

1.教学重点:菱形的判定方法。

2.教学难点:菱形判定方法的综合应用。

四、课时安排。

1课时。

五、教具学具预备。

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具。

六、师生互动活动设计。

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨。

七、教学步骤。

复习提问。

1.叙述菱形的定义与性质。

2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.

引入新课。

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法。

此外还有别的两种判定方法,下面就来学习这两种方法。

讲解新课。

菱形判定定理1:四边都相等的四边形是菱形。

菱形判定定理2:对角钱互相垂直的平行四边形是菱形。图1。

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。

分析判定2:。

师问:本定理有几个条件?

生答:两个。

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直。

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等。

(由学生口述证实)。

证实时让学生注重线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线,但都不是菱形。

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):。

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。

例4已知:的对角钱的垂直平分线与边、分别交于、,如图。

求证:四边形是菱形(按教材讲解).

总结、扩展。

1.小结:

(1)归纳判定菱形的四种常用方法。

(2)说明矩形、菱形之间的区别与联系。

2.思考题:已知:如图4△中,平分,交于。

求证:四边形为菱形。

八、布置作业。

教材p159中9、10、11、13。

数学教学设计案例

教学内容:《义教课程标准实验教科书一年级数学上册》第3~4页教学目标:

1.以生活中有关“左、右”的真实情境激发学生兴趣。

2.通过学生参与多种形式的数学活动,使学生经历建立“左、右”方位感的过程。3.能正确辨别“左、右”的位置关条,体验其相对性。

4.培养学生运用“左、右”的数学知识解决实际问题的能力和与人交流的能力以及观察能力,让学生体会到生活中处处有数学。

5.结合教学内容对学生进行“乐于助人”的思想品德教育和。教学重、难点:

正确辨别左、右的位置关系,体验其相对性。教具准备:课件教学过程:

一、感知自身的左右1.创设问题情境。

师:小朋友们会念拍手歌吗?喜欢玩吗?谁能来表演一下?问:小朋友们,刚才他们是用什么拍掌的?2.体验左、右。

(1)师:请伸出你的右手,再伸出你的左手。(2)看一看。

(4)师小结:左手、右手是一对好朋友,配合起来力量可大了,可以做许许多多的事情,小朋友们瞧瞧自己的身体,还有像这样的好朋友吗?(5)生说。(要求学生摸着说。)(6)揭示课题。

3.小游戏:听口令,做动作。举左手,举右手;举右手,举左手。左手摸左耳朵,右手摸右耳朵。左手拍左肩,右手拍右肩。左脚跳两下,右脚跳两下。拍一拍:

在身体的上面、下面、前面、后面、左面、右面各拍两下掌。二、感知群体中的左边、右边,建立方位感1.找一找。

(1)第一横排坐在最左边的是谁?最右边的又是谁?

(2)第二横排中,从左往右数,第__个同学是谁?从右往左数,第__个同学又是谁?

师小结:同一个人,从不同的方向去数,顺序也就不同。(3)你的左边是哪个同学?右边又是哪个同学?(4)同桌互相说一说。你的左面、右面都有哪些同学?(5)全班交流。

2.解决生活中的实际问题。

(1)创设问题情境:一只小猪找不到回家的路,请小朋友用学到的前、后、左、右的知识帮小猪找家。(2)学生展开讨论。(3)计算机演示结果。

(4)对学生进行安全教育和乐于助人的思想品德教育。三、体验左右的相对性,加强理解1.创设问题情境。

(1)师:老师和你们是面对面站的。请你判断:老师举得是哪只手呢?(2)同桌互相说一说:你是怎样想的?(3)全班交流、验证。

师小结:两个人面对面站的时候,左、右刚好相反。2.游戏巩固认识。(1)师生齐举左手。(2)师与生演示。

老师的右手搭在同学的哪只肩上?老师的左手搭在同学的哪只肩上?学生的右手搭在老师的右肩上。学生的左手搭在老师的左肩上。(3)两生演示。

伸出右手握握手,你是我的好朋友,自己的右手褡在对面同学的右肩上。自己的左手搭在对面同学的左肩上。(4)全班齐做。

1.计算机演示:小白兔用前、后、左、右的知识介绍自己的卧室。2.学生运用前、后、左、右的知识介绍生活中的情境。3.师小结,全课结束。分析:

每个学生的生活与数学知识背景、数学活动经验、所处的文化环境、自身思维方式都各不相同。因此新课程标准教学新理念指出,数学内容的呈现形式应多样化,以保证学生积极、主动地参与整个学习过程,使他们的数学学习活动是一个主动的、生动活泼的和富有个性的过程。

1、突出知识之间的联系与综合数学是一个整体,其不同的分支之间存在着实质性联系。按照教材的编排意图,根据学生的年龄特点,合理安排教学全过程。2、设计生活化的教学内容:创设生活情境,引发学生兴趣。这节课教学内容是左右,从日常生活入手,创设一个问题情境,从自身入手,从真实的生活中提出问题。用学生熟悉的,有兴趣的,贴近他们现实生活的内容进行教学,才能唤起他们的学习兴趣,调动学习积极性,使学生感受到生活与数学知识是密不可分的,使数学课富有浓郁的生活气息,从而产生学习和探求数学的动机,主动应用数学去思考问题、解决问题。

3、注重呈现形式的丰富多彩在数学教学中,我们应努力让孩子们愿意亲近数学、了解数学、喜欢数学,从而主动地从事数学学习。根据学生的兴趣爱好和认知特征,采取适合于他们的表现形式,培养他们一种愿意甚至喜爱的积极情感。

4、关注对数学的理解,发展富有个性地学习促进随着开放式教学的深入开展,课堂中学生的主动性、创造性都得到充分的发展,应用有关数学问题的能力不断提高,课堂上应尽量抓住学生出现的一些问题,关注学生对数学的理解,及时调控课堂教学。

高中数学教学设计

解三角形及应用举例。

解三角形及应用举例。

一.基础知识精讲。

掌握三角形有关的定理。

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;。

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;。

(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

二.问题讨论。

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市o(如图)的东偏南方向300km的海面p处,并以20km/h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

一.小结:

1.利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;。

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);。

2.利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;。

(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段.

三.作业:p80闯关训练。

高三数学教学设计案例

一、概述。

九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。

二、设计理念。

鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。

(1)激发学生亲自探索直线和圆的位置关系。

(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。

(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

四、教学重点。

直线与圆的三种位置关系——相交、相切、相离。

从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。

五、教学难点。

探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

高中化学教学设计案例

设计意图:

在我园年俗表演中,我们邀请了皮影艺人为孩子们来进行表演,在表演的艺术中,孩子。

们对皮影戏这门中国传统的艺术形式产生了浓厚的兴趣,我园也为孩子们开设了有关皮影戏。

的活动,希望孩子们通过这样的活动,了解皮影戏,学习制作皮影并尝试表演。

活动目标:

1、初步了解皮影戏的有关知识,知道表演皮影戏需要用到的`一些道具。

2、了解制作皮影的材料和制作过程。

3、激发幼儿合作表演的兴趣。

活动准备:

活动过程:

一、了解欣赏皮影戏。

天我也给你们带来了一个我特别特别喜欢的故事《小小的早餐》,请你们欣赏一下。

2、幼儿观看,教师表演。

引导幼儿说出皮影戏,知道表演皮影戏还有另外一个名字叫做“灯影戏”,就是通过我们这。

个戏台幕布后面的灯光投射出我们这个活动皮影的影像,这种表演形式我们叫他“皮影戏”

也叫做“灯影戏”

让幼儿探索,尝试说出皮影的制作过程。

为了做工方便保存方便,我们现在都是用塑料板纸来制作皮影的。

师:孩子们,我们制作皮影一共分为几步呀?

幼:三步。

师:第一步是绘制皮影,第二步是剪切,第三步是将材料把皮影卡连接在一起。

教师示范制作过程。

二、幼儿制作皮影,教师巡回指导。

三、表演皮影戏。

每组幼儿表演不同的主题。

四、活动延伸。

孩子们,你们想不想分享给班级里的其他小朋友,那我们带着这些皮影给其他小朋友进行表。

演吧!

将本文的word文档下载到电脑,方便收藏和打印。

高三数学教学设计案例

本节课是北师大版高中数学必修5中第三章第4节的内容。主要是二元均值不等式。它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。

就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。

二、教学目标和目标解析。

教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。

在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。

学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。

进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。

通过应用问题的解决,明确解决应用题的一般过程。这是一个过程性目标。借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。

在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识。但是,倘若教师不加以引导,学生并不能自觉地通过已有的知识、记忆去发展和构建几何图形中的相等或不等关系,这就需要教师逐步地引导,并选用合理的手段去激活学生的思维,增强数形结合的思想意识。

另外,尽可能引领学生充分理解两个基本不等式等号成立的条件,为利用基本不等式解决简单的最值问题做好铺垫。在用基本不等式解决最值时,学生往往容易忽视基本不等式,使用的前提条件a,b0同时又要注意区别基本不等式的使用条件为,因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。

四、教学支持条件分析。

为了能很好地展示几何图形,体会基本不等式的几何背景,教学中需要有具体的图形来帮助学生理解基本不等式的生成,感受数形结合的数学思想,所以,借助于几何画板软件来加强几何直观十分必要,同时演示动画帮助学生验证基本不等式等号取到的情况,并用电脑3d技术展示基本不等式的又一几何背景,加深对基本不等式的理解,增强教学效果。

教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。通过典型例题的讲解,明确利用基本不等式解决简单最值问题的应用价值。数形结合的思想贯穿于整个教学过程,并时刻体现在教学活动之中。

六、教法和预期效果分析。

本节课通过6个教学环节,强调过程教学,在教师的引导下,启动观察、分析、感知、归纳、探究等思维活动,从各个层面认识基本不等式,并理解其几何背景。课堂教学以学生为主体,基本不等式为主线,在学生原有的认知基本上,充分展示基本不等式这一知识的发生、发展及再创造的过程。

同时,以多媒体课件作为教学辅助手段,赋予学生直观感受,便于观察,从而把一个生疏的、内在的知识,变成一个可认知的、可交流的对象,提高了课堂效率。

会用基本不等式解决简单的最大(小)值问题并注意等号取到的条件。在教学过程中始终围绕教学目标进行评价,师生互动,在教学过程的不同环节中及时获取教学反馈信息,以学生为主体,及时调节教学措施,完成教学目标,从而达到较为理想的教学效果。

高中物理教学设计案例

内容:选修3-1第三章《磁现象和磁撤(普通高中课程标准实验教科书)。

教材分析。

磁现象和磁场是新教材中磁场章节的第一节课,从整个章节的知识安排来看,本节是此章的知识预备阶段,是本章后期学习的基础,是让学生建立学习磁知识兴趣的第一课,也是让学生建立电磁相互联系这一观点很重要的一节课,为以后学习电磁感应等知识提供铺垫。整节课主要侧重要学生对生活中的一些磁现象的了解如我国古代在磁方面所取得的成就、生活中熟悉的地磁场和其他天体的磁场(太阳、月亮等),故本节课首先应通过学生自己总结生活中与磁有关的现象。电流磁效应现象和磁场对通电导线作用的教育是学生树立起事物之间存在普遍联系观点的重要教学点,是学生在以后学习物理、研究物理问题中应有的一种思想和观点。

学生分析。

磁场的基本知识在初中学习中已经有所接触,学生在生活中对磁现象的了解也有一定的基矗但磁之间的相互作用毕竟是抽象的,并且大部分学生可能知道电与磁的联系,但没有用一种普遍联系的观点去看电与磁的关系,也没有一种自主的能力去用物理的思想推理实验现象和理论的联系。学生对磁场在现实生活中的应用是比较感兴趣的,故通过多媒体手段让学生能了解地磁尝太阳的磁场和自然界的一些现象的联系(如黑子、极光等),满足学生渴望获取新知识的需求。

教学目标。

一、知识与技能。

1、让学生自己总结生活中与磁有关的现象,了解现实生活中的各种磁现象和应用,培养学生的总结、归纳能力。

2、通过实验了解磁与磁、磁与电的相互作用,掌握电流磁效应现象。使学生具有普遍联系事物的能力,培养观察实验能力和分析、推理等思维能力。

3、通过直观的多媒体手段让学生熟悉了解地磁场和其他天体的磁场。

二、过程与方法。

1、让学生参与课前的准备工作,收集课外的各种磁有关的现象和应用。

2、在电流磁效应现象的教育中,本节课采用类似科学研究的方式,还原物理规律的发现过程,强调学生自主参与。

3、学生对物理现象进行分析、比较、归纳,采用老师与学生双向交流感知现象下的物理规律的普遍联系。

三、

情感态度价值观。

1、对奥斯特的电流磁效应现象的教育中,要让学生知道奥斯特的伟大在于揭示电和磁的联系,打开了科学中一个黑暗领域的大门。也让学生懂得看似简单的物理现象在它发现的最初过程中是如何的艰难。

2、通过知识的学习,培养学生学科学、爱科学、用科学的精神,树立起事物之间存在普遍联系的观点。通过学习中国古代对磁的应用,加强爱国主义教育。

1、这是磁场章节的第一节课,教学过程应重在显示学生对磁这一知识的了解和对磁知识的生活的体验。为此,本节课采用以问题为主线、实验为基础的教学策略。问题情景的创设,是思维的启动点和切入口,而实验是物理研究的理论支持。

2、电流磁效应的研究是本节课的重点,在设计中可让学生自己讨论研究的思想,在这基础。

上提出奥斯特的实验及研究过程中出现的困难。然后自然得过渡到磁场对电流的作用上来。

一、课前调查、准备。

教师提出问题:

1、你对生活中有关磁的现象和应用了解多少,能否举出你所熟悉的一些现象和应用呢?

任务:在课前请同学通过网络去获知磁有关的知识。

二、实验演示,引入新课。

1、利用磁钢堆硬币积木。

实施过程:在木凳的下方可事先藏一小块磁钢,在木凳的上方在磁钢的磁化作用下可堆起四层高的硬币积木。

2、演示“磁悬副小实验。

师:以上两实验的现象是如何出现的呢?具体的奥妙在那里呢?

学生非常新奇,对实验中出现的现象猜测各种原因,激起学生学习磁知识的兴趣。

三、实验探索、新课教学。

师:在初中我们已接触了一些磁有关的知识,生活中有哪些与磁有关的现象和应用?同学之间可互相讨论。

(因课前有准备,学生相对比较活跃,要充分把学生所知道的知识表述出来)。

师:对磁的认识和应用,早在我国古代就开始了。

多媒体投影补充说明磁有关的现象和应用:

1、天然磁石(成分:fe3o4)。

2、司南的照片。

东汉王充在《论衡》中写道:“司南之杓,投之于地,其柢指南”

3、磁悬浮列车。

上海磁悬浮列车专线西起上海地铁龙阳路站,东至上海浦东国际机场,列车加速到平稳运行之后,速度是430公里/小时。这个速度超过了f1赛事的最高时速,车厢里上下颠簸很小,左右摇摆得相对还大一些。

4、飞鸽依靠地磁场识路等。

从学生最熟悉的磁知识着手,引出磁的一些概念:

磁铁吸引铁质物质。

5、实物投影指南针的指向。

磁性:磁体能吸引铁质物体的性质。

磁极:磁体中磁性最强的区域。从中引出n、s极的定义。

让学生从磁铁使铁质物体磁化联系到电能使铁质物体磁化,从而来说明电与磁的关系,引出奥斯特电流磁效应现象。

师:磁铁能吸引铁钉,铁钉是磁铁吗?为什么磁铁可以吸引铁钉?

学生回答:铁钉被磁化。

师问:那么在自然界中还有没有什么其他的东西能使铁质物体磁化的呢?

(请同学互相帮助想一想,然后回答)。

学生:电流可以使铁质物体磁化。

可以向学生说明:1731年,英国商人发现雷电后,刀叉具有磁性。1751年,富兰克林发现莱顿瓶放电可以使缝衣针磁化。

学生:电荷之间的作用力相似。

师:那么会不会说明两者存在联系呢?如果让你去研究电与磁的关系,你会如何去设计?学生由于已受初中磁知识学习的影响,都提出让通电导线对小磁针作用。

投影介绍奥斯特的生平。

实验演示奥斯特的电流磁效应:

老师在此说明奥斯特的生平和发现电流磁效应的历程,让学生知道每一次科学新发现是艰难的,需要付出的是前期不断的努力和对科学的执著、自信。

实验说明:通电导线会产生磁场,对磁针产生力的作用。

提问:既然电流对磁铁有力的作用,那么磁铁是否也应该对通电导线有力的作用呢?

学生回答:应该有。但可能有部分学生因没有普遍联系的观点而不知如何进行逻辑推理。演示实验:

安培在此三个月后发现磁场对电流的作用。

学生:磁场。

因磁场是一种抽象的物质,学生对其了解较少,故可能有一些疑问。

多媒体演示磁场是力发生的媒介,让学生对磁场的作用有更形象的理解。

(先请学生说说自己对此的认识,可分组讨论,最后由代表发言)。

师:总结学生的观点,后通过视频说明:

地磁场的分布及与地磁南北极与地理南北极的方向关系。

视频介绍:

地磁场形成的一种原因。

投影介绍地磁场的衰减及其可能的原因。

介绍磁偏角的概念及其发现的实际意义。

指南针所指的南北(磁场的南北极)与地理上的南北极并不完全一致,两者之间存在着偏角,即磁偏角。

师指出:沈括在《梦溪笔谈》中指出:“常微偏东,不全南也”。这是世界上最早的关于磁偏角的记载。

师问:除了地球有磁场外,其他天体是否也有磁场呢?

有些学生的课外知识较广,可请个别学生把自己对其他天体的磁场的认识阐述一下。

师投影介绍:地球的磁场不是独立的,太阳、月亮等天体都有磁场,并且太阳光、太阳黑子、极光形成都与太阳磁场有关。

视频介绍:太阳黑子的形成视频介绍:太阳风、极光的形成原因。

板书设计。

磁现象和磁场。

磁现象。

磁性:磁体能吸引铁质物体的性质磁极:磁体中磁性最强的区域。

电流的磁效应。

奥斯特生平介绍电流磁效应实验。

磁场。

磁场对通电导线的作用磁场的作用。

地球和其他天体的磁场。

教学后记。

高中数学教学设计

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力。

4、初步培养学生反证法的数学思维。

二、教学分析。

重点:四种命题;难点:四种命题的关系。

1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)。

1、以故事形式入题。

2、多媒体演示。

四、教学过程。

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣。

(二)复习提问:

1.命题“同位角相等,两直线平行”的条件与结论各是什么?

2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

学生活动:

设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.。

(三)新课讲解:

1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2。

学生活动:

讨论后回答。

这两个逆否命题都真.。

原命题真,逆否命题也真。

引导学生讨论原命题的真假与其他三种命题的真。

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用vp和vq分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)。

否命题,若vp则vq;(同时否定原命题的条件和结论)。

逆否命题若vq则vp。(交换原命题的条件和结论,并且同时否定)。

2、四种命题的关系。

(1).原命题为真,它的逆命题不一定为真.。

(2).原命题为真,它的否命题不一定为真.。

(3).原命题为真,它的逆否命题一定为真。

(七)回扣引入。

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

同学们,生活中处处是数学,期待我们善于发现的眼睛。

五、作业。

1.设原命题是“若。

断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判。

高中数学课堂教学设计

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

重点、难点:用斜二测画法画空间几何值的直观图。

1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规

(一)创设情景,揭示课题

1.我们都学过画画,这节课我们画一物体:圆柱

把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知

1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法

(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

4.平行投影与中心投影

投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

5.巩固练习,课本p16练习1(1),2,3,4

三、归纳整理

学生回顾斜二测画法的关键与步骤

四、作业

1.书画作业,课本p17练习第5题

2.课外思考课本p16,探究(1)(2)

高中数学教学设计

1.教师要解放思想,与时俱进。在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不要大包大揽,把结论或推理直接展现给学生,要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系,采用这样的教学方式,学生的学习热情自然高涨,个性思维积极活跃,人格发展自然和谐。

2.学生要转变学法,主动出击。鉴于目前的教学实际,必须创造条件让学生能够探究他们自己感兴趣的问题并自主解决问题。新的课堂教学模式的特点关注学生的情感体验,激发学生的爱国热情,创设良好的教学情景。渗透了民主平等、自然和谐的教学思想,注重自主合作与探究生成,重视对学生的评价,把课堂还给学生,学生参与的时间明显增多,老师们能注重以学生为主体,师生互动形式多样。让学生主动站起回答教师提出的问题,让学生主动上台演排,让学生间相互交流,分组讨论,把课堂还给学生,让学生在参与中实现知识的生成。

3.课堂要形式多样,追求高效。新的数学课程理念倡导数学教学应该根据不同教学内容的要求,采用不同教学方式。数学课程要讲推理,更要讲道理。通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论的形成过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹。在内容上,新课程注意把算法的内容和思想融入到数学课程的各个相关部分。

将本文的word文档下载到电脑,方便收藏和打印。

小学数学教学设计案例

教学目标:

1、体验数据的收集、整理、描述和分析的过程,初步了解统计的意义,会用正字法法收集和整理数据。

2、初步认识条形统计图(1个格子表示两个单位)和统计表,能根据统计图表中的数据提出并回答简单的问题。

3、通过身边有趣事例的的调查活动,激发学习的兴趣,培养学合作意识和实践能力。

教学重点:

体验数据的收集、整理、描述和分析的过程,初步了解统计的意义,会用正字法收集和整理数据;认识条形统计图(1个格子表示两个单位)和统计表。

教学难点:

认识条形统计图(1个格子表示两个单位)和统计表,能根据统计图表中的数据提出并回答问题。

教学方法:

讨论法、观察法、情景法、分小组合作学习法。

教具准备:

操行统计表、水彩笔。

教学过程:

一、设情景问题置疑,引入新课。

师:同学们,六一儿童节就要来了,我们班上要出两个节目,大家觉得我们可以出什么呢?

生:唱歌、跳舞、绘画、走时装步。

师:不错,合唱、舞蹈、小品、乐器我们可以考虑一下,我们可以从这四类节目中选出两个,我们怎么决定出哪两个节目呢?这就要用到我们一年级时所学的统计知识。老师想让大家投票来决定,下面老师请每组讨论出两个节目,等会投票。板书课题:“统计”。

二、探究新知。(随时注意给表现突出的大组或个人加五星和红旗)。

1、收集数据的过程。

师:我们要知道哪两个节目的票数第一步就需要我们来收集数据。

板书“收集数据”。

师:小组讨论收集数据的方法。(教师行间巡视,对方法收集好的小组和合作愉快的小组加五星)。

师:下面请各小组汇报交流各种方法,并说说本小组认为最简单的记录方法,谈谈为什么?

师:老师今天给大家带来一个新的方法正字法,下面组长就把讨论结果在黑板上按“正”字的书写顺序画一笔画。(学生按大组顺序上台投票配上音乐伴奏曲)。

2、整理数据的过程。

师:请大家整理好每种节目的票数,再填到统计表中,我们数“正”字笔画的过程,就是我们整理数据的过程。

师:下面请小组一起讨论解决问题的方法。

生:(汇报交流结果)一个格子不表示1票,而把它表示成两票刚好用4个半格子。

师:大家觉得他的方法可行吗?没错,我们可以用一个格子表示2票。请大家分别在条形统计图上用这种方法表示出每种节目的票数。老师想请一位同学到黑板上来画一画。

师:一个格子表示几票要根据统计表中数量最多的项目和每竖行总共的格子数来确定。

3、描述、分析的过程。

师:从黑板上的统计表和统计图中你看出了些什么?知道了什么,明白了什么?生:xx的票最多,xx的票最少。最多的比最少的多几票?知道了条形统计图中一个格子不但可以表示1个人或物,还可以根据具体的情况表示2个或3个甚至更多个人或物。

师:刚才大家的.回答就是我们对统计表描述分析的过程(板书“描述、分析”)。

三、联系生活。

师:在我们的生活中有很多地方都要用到我们的统计知识,比如跟跟妈妈一起去超市购物回来,我们可以统计买的什么种类的商品最多;老师在班上要统计哪一组的五角星最多,哪一组的表现最优秀等等。回家后大家继续找一找能够用到统计的例子,下节课我们一起来说一说。

四、描述分析。

这个案例能贴近学生生活,从学生感兴趣的事例中选取素材进行教学。案例中,教师创设良好的学习情境,让学生从熟悉有趣的“庆六一”开联欢会出节目出发。由于学生喜欢的节目很多,可是出2个节目,产生进行统计活动的需要,必须从同学们喜欢的节目中选取最多人喜欢的2个节目。只有通过统计才能确定出哪2个节目。让学生经历收集信息、处理信息的过程,逐步体会统计的必要性。在这样一个良好的情境中,学生积极主动地探索、合作、交流,课堂成了学生创造灵感的空间。

五、体会与反思。

课标强调学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。教师能依据课程标准的要求,结合学生的兴趣、贴近学生生活出发,灵活选取素材。重视创设良好的学习情境,让学生从熟悉有趣的“庆六一”开联欢会出节目这件生活中的小事出发进行统计活动。让学生经历收集信息、处理信息的过程。如:先要知道哪2种节目是最多人喜欢的?根据一年级学生的年龄特点,教学时教师非常重视学生的操作活动,用“贴星星”的方法,选择自己最喜欢的节目,只有让学生在直接的操作和感知的基础上才能逐步体会统计的必要性。

教师在课堂上要给学生留有充足的时间和空间,使每一位学生都能有效地参与讨论,发表自己的看法,倾听别人的见解。课学教学要有师生平等、开放的良好学习氛围,为学生提供畅所欲言的机会,让他们的思维活起来,真正成为学习的主人。案例中,教师本着同学生商量的语气“出什么节目好呢?”、“怎么办?”让学生在这种轻松、自由的氛围中交流讨论,寻求解决问题的办法。学生的学习氛围浓厚,积极地投入到学习中去。

新课标强调:学生的数学学习内容是现实的、有意义的、富有挑战性的。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。案例中,教师提出“开联欢会,由于班费有限,只能买2种水果,买什么好呢?”这里遇到了困难,产生了分歧,有了争执。教师把握机会组织学生讨论,这个讨论是必要的,也是适时和有价值的。这里融入了小朋友的猜测、验证与交流等数学活动。给予学生充分的自由空间,学生用自己喜欢的方法、方式,大胆地进行探索、创造,寻求解决问题的方法。教师紧密联系生活实际,让学生在统计的整个过程中真心体会到统计的意义和价值。这些都充分体现了学生的数学学习是一个生动活泼、主动的和富有个性的过程。

高中数学教学设计

首先,可以联系实际生活。数学知识在生活中有着广泛的应用,与实际生活有着广泛的联系,在进行课堂导入设计时,教师可以联系学生的实际生活,激发学生的好奇心。例如在学习抛物线的知识时,可以这样导入:让学生回想一下打篮球的情景,由于场地限制,在课堂上可以用乒乓球代替篮球,做投篮动作,让学生仔细观察篮球(乒乓球)落地时的轨迹,在学生积极参讨论时,引入抛物线的知识。在导入中联系实际生活,不仅能够激发学生的兴趣,并且能够拉近学生与数学之间的距离。

其次,教师可以利用数学史进行导入。数学教材中很多知识都与数学史相关,学生对这部分知识充满兴趣,因此在教学过程中,教师设计课堂导入时可以从这一点入手,先通过提问或者介绍的方式,让学生了解数学史上的重大事件和重要人物等,引起学生的敬佩和仰慕之情,然后引入相关的数学知识。兴趣是最好的老师,在学生的期待下展开数学教学,无疑会提高课堂教学效率。课堂导入的方式有很多种,在具体的操作环节,教师要注意导入方式的多样性,才能更好地激发学生的兴趣,在高中数学教学中教师要根据实际情况进行合理选择使用。

做好课堂提问设计。

首先,教师要精心设计问题。提问的目的是为了激发学生的兴趣和思维,因此,教师提问的问题不能是单调、重复的,而应该是具有启发性和针对性,能够激发学生的思考,引导学生进行步步深入。最重要的是,教师提出的问题要符合学生的知识水平和认知能力,教师不仅应该了解教材,并且要全面了解学生,这样才能使提出的问题符合学生的需要。学生的数学水平是不同的,接受能力也有差异,因此教师要注意提出问题的层次性,并针对不同水平的学生设计不同难度的问题,促进每个学生获得进步和发展。

其次,课堂提问的方式要多样化。如同教学方式需要多样化一样,提问的方式也要具有多样化的特点,这样才能更好地激发学生兴趣,达到教学目的,否则,无论教师设计的问题多么巧妙,学生也会感到厌烦。根据问题的内容和学生实际情况,提问可以是直接问答;可以是导思式;可以教师提问、学生回答;也可以是学生提问、教师回答。在教学过程中教师要注意培养学生的问题意识,鼓励学生自己提出问题,问题是思考的开端,对于学生来说提出问题比解决问题更重要,因此,教师要为学生创造机会,让学生在认真阅读教材的基础上,根据自己的理解提出不懂的问题。提出的问题教师可以进行点拨,让学生思考,也可以组织学生进行讨论,培养学生分析问题和解决问题的能力。

高中数学教学设计

《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。——《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析。

该内容在《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想。

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标。

1、了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;。

2、体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;。

3、在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点。

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;。

难点:培养学生合作交流的能力以及收集和处理信息的能力。

【课堂准备】。

1、分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2、选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教学设计

合理制定三维目标,明确重点与难点。

《普通高中数学课程标准》提出的三维教学目标是:知识与技能,过程与方法,情感态度与价值观。知识与技能目标包括学生要知道、了解、理解的基础知识、基本原理目标和学生必须达到的基本技能目标;过程与方法目标包括实现数学科学中的探究过程和探究方法、优化学生的学习过程,强调学生探索新知识的经历和获得新知识的体验;情感态度与价值观目标中包括学生的学习兴趣与热情、战胜困难的精神、认识数学之美感和塑造学生的人格。三维目标之间的关系是“在实现知识与技能的过程中有机地融合、渗透过程与方法目标、情感态度与价值观目标的达成。”三维目标是课堂教学活动的出发点与归宿。

教学设计时教师要依据教材的具体内容,结合学生的学习实际,以促进每一个学生的发展为本,合理地制订三维目标,注意体现三维目标的整体性,相辅相成。所谓重点,指一节课中最重要的新知识,即联动全局,带动全面的重要之点,是学生认知发生转折与质变的地方,是教学的重心所在,是课堂教学中需要解决的主要矛盾。所谓难点是一节课中学习起来最困难的地方,是学生的认知能力与知识要求之间存在较大矛盾、知识跨越最大的地方,是学生难于理解和掌握的内容。例如“等差数列前n项和”这节课中的重点是“等差数列前n项和公式”,难点是“等差数列前n项和公式的推导——倒序相加法”。只有合理制订三维目标和确定好重点与难点,才能围绕三维目标和重点与难点的突破,制定出出色的教学设计。

创设生活情景,使数学生活化。

为学生提供充分从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学体验,将数学应用于生活,提高自主探究数学知识的能力和学生学习数学能力。

认知最牢靠和最根深蒂固的部分就是生活中经常接触和经常使用的知识,有些已经进入了他们的潜意识。如果能把新知识巧妙地溶于生活情境中,那将会是学生非常欢迎的,一旦接受也会被牢固掌握。而现代教学手段比以往更容易让现实生活中的现象再现或模拟于课堂。因此,从学生的生活经验和知识背景出发,提供学生充分进行数学实践活动和交流的机会课堂效果一定会很好。用与学生年龄特征相适应的大众化、生活化的方式呈现数学内容,也是数学课程改革的一个基本思路。教师要敢于走出教材,走出课堂,走进丰富多彩的生活。比如在引入两个平面垂直的判定定理时,教师提出:建造一座大楼,怎样才能使墙面与地面垂直呢?学生很快会联想到建筑工人常常用一端系着铅锤的细绳让其垂直地面,并以这根绳子为参照,看看所砌的墙是否经过这条细绳。然后问:为什么若墙面经过这条绳子,所砌的墙就与地面垂直呢?还可以引导学生观察教室门板与地面的位置关系,它们是否垂直?转动门扇是否还与地面保持垂直,奇怪吗?为什么?到底隐藏着数学上的什么奥秘?由这些亲切真实情景,导出两个平面垂直的判定定理就水到渠成了。

高中数学教学设计

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

(精确到0.001)。

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

高中数学教学设计

高中数学教学应鼓励学生用数学去解决问题,甚至去探索一些数学本身的问题。教学中,教师不仅要培养学生严谨的逻辑推理能力、空间想象能力和运算能力,还要培养学生数学建模能力与数据处理能力,加强在“用数学”方面的教育。最好的方式就是用多媒体电脑和诸如《几何画板》、《几何画王》、《几何专家》等工具软件,为学生创设数学实验情境。例如,在上“棱柱和异面直线”课时,我们指导学生用硬纸制作“长方体”和“正三棱柱”等模型。教师用《几何画板》设计并创作“长方体中的异面直线”课件,引导学生利用自己制作的“长方体”模型和上述课件,思考以下问题:“长方体中所有体对角线(4条)与所有面对角线(12条)共组成多少对异面直线?”、“长方体中所有体对角线(4条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有棱(12条)之间相互组成多少对异面直线?”、“长方体所有面对角线(12条)与所有棱(12条)共组成多少对异面直线?”、“长方体中所有面对角线(12条)之间相互组成多少对异面直线?”。然后由学生独立进行数学实验,探讨上述问题。

此外,教师还要根据数学思想发展脉络,充分利用实验手段尤其是运用现代教育技术,创设教学实验情景、设计系列问题、增加辅助环节,有助于引导学生通过操作、实践,探索数学定理的证明和数学问题的解决方法,让学生亲自体验数学建模过程,培养学生的数学创新能力和实践能力,提高数学素养。

巧设情境,增加学生的投入感。

为了构建生动活泼富有个性的数学课堂,我把创设情境,激发学生的学习兴趣当成数学教学的重头戏,使之成为数学课的一道亮丽的风景。《数学课程标准》强调数学课堂教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使学生有更多的机会从周围熟悉的事物中学习数学,理解数学,让学生感受到数学就在他们周围。因此,我从学生已有的生活经验出发,创设有趣的教学情境,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,感受数学与日常生活的密切联系,感受数学在生活中的作用,加深对数学的理解,并运用数学知识解决现实生活中的问题。如《课程标准》在综合实践的教学建议部分提供了这样一个案例:

要求学生统计自己家庭一周内丢弃的塑料袋个数,并依据所收集的数据展开讨论。其程序是:(1)作为家庭作业提出此问题;(2)学生自主进行统计活动;(3)请某学生在课堂上对结果做现场统计(列出统计表,老师也把自己的统计结果融入其中);(4)统计分析(引导学生根据数据对全班一周丢弃塑料袋情况用不同的算法进行描述和评价);(5)结合问题情境深入领会有关概念(如平均数、中位数、众数等)的含义,并通过问题的层层深入让学生进一步感受不同统计量来表示同一问题的必要性;(6)问题自然延伸(计算这些袋对土地造成的污染,先估计一个袋的污染,然后通过多种方式计算推及到一周呢?一年呢?全校同学的家庭呢?照此速度要多久就会污染整个学校呢?)。由此例可以看出,这种模式的一个关键点就是围绕着学生日常生活来展开的,由学生身边的事所引出的数学问题,使学生体会到数学与生活的紧密和谐关系,朴素的问题情境自然让学生产生一种情感上的亲和力和感召力,可以让他们真正应用数学,并引导他们学会做事。

相关内容

热门阅读
随机推荐