首页 > 范文 > 总结

四年级数学下册知识点总结

四年级数学下册知识点总结



四年级数学下册知识点总结

为了帮助各位同学掌握巩固小学四年级数学下册知识点,下面小编为大家带来四年级数学下册知识点总结,欢迎大家参考阅读,希望能够帮助到大家!

四年级数学下册知识点总结

1.整数加法

(1)把两个数合并成一个数的运算叫做加法。

(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

(3)加数+加数=和,一个加数=和-另一个加数

2.整数减法

(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

(3)加法和减法互为逆运算。

3.整数乘法

(1)求几个相同加数的和的简便运算叫做乘法。

(2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

(3)在乘法里,0和任何数相乘都得0.

(4)1和任何数相乘都的任何数。

(5)一个因数×一个因数=积;一个因数=积÷另一个因数

4.整数除法

(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

(3)乘法和除法互为逆运算。

(4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

(5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。

5.整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

6.整数减法计算法则

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

7.整数乘法计算法则

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

8.整数除法计算法则

先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

9.运算顺序

(1)小数、分数、整数

小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。

(2)没有括号的混合运算

同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。

(3)有括号的混合运算

先算小括号里面的,再算中括号里面的,最后算括号外面的。

(4)第一级运算

加法和减法叫做第一级运算。

(5)第二级运算

乘法和除法叫做第二级运算。

10.加法交换律

加法交换律的概念为:两个加数交换位置,和不变。

字母公式:a+b+c=(b+a)+c

11.加法结合律

加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。

字母公式:a+b+c=a+(b+c)

12.乘法交换律

乘法交换律的概念为:两个因数交换位置,积不变。

字母公式:a×b=b×a

13.乘法结合律

乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。

字母公式:a×b×c=a×(b×c)

14.乘法分配律

乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。

字母公式:(a+b)×c=a×c+b×c

15.小数:

小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数,小数是十进制分数的一种特殊表现形式。

16.小数基本性质

小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。

17.小数的写法

整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。

18.小数的读法

一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读.例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。

另一种读法,整数部分仍按整数的.读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0。例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。

19.小数的比较

小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较。因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大;

20.小数的性质:

(1)在小数的末尾添上零或去掉零,小数的大小数不变.

(2)小数点移动会引起小数大小发生变化.把小数点分别向右移动一位、二位、三位…位,则小数的值分别扩大10倍、100倍、1000倍……

如果把小数点分别向左移动一位、二位、三位…则小数的值分别缩小到原来的十分之一、百分之一、千分之一…

21.小数的近似值:

保留小数:按要求在舍去部分最高位进行四舍五入运算。

22.小数加法

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

23.小数减法

小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

24.三角形

由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。

25.生活中的三角形物品

雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。

26.三角形中的线段

(1)中线:顶点与对边中点的连线,平分三角形的面积。

(2)高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。

(3)角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴)

(4)中位线:任意两边中点的连线。

27.三角形为什么具有稳定性

任取三角形两条边,则两条边的非公共端点被第三条边连接

∵第三条边不可伸缩或弯折

∴两端点距离固定

∴这两条边的夹角固定

∵这两条边是任取的

∴三角形三个角都固定,进而将三角形固定

∴三角形有稳定性

小学四年级数学下册知识点

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c  (a-b)×c=a×c-b×c

四年级数学下册知识点人教版

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

解一(100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;

36-22=14(只)…………………………兔。

(答略)

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费_元,破损者不仅不给运费,还需要赔成本_元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………鸡

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

鸡兔同笼

1、鸡兔同笼属于假设问题,假设的和最后结果相反。

2、“鸡兔同笼”问题的解题方法

假设法:

①假如都是兔

②假如都是鸡

③古人“抬脚法”:

解答思路:

假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

3、公式:

鸡兔总脚数÷2-鸡兔总数=兔的只数;

鸡兔总数-兔的只数=鸡的只数。

相关内容

热门阅读
随机推荐