人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
本说课稿完整细腻,较好地实现理论联系实际,将教材、教法、学法有机融合,以下两个特点尤为突出:
1.经历观察、归纳、概括、推理过程,注重合情推理能力的培养
新课标强调指出,“探索规律”的教学应作为培养归纳、类比等合情推理能力的重要载体。教学中应注重让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力。本课教学学生在计算器计算5道算式(1÷11=2÷11=3÷11=4÷11=)后,探求隐含的规律或变化趋势,教师组织交流规律的发现,引导学生体验探究和发现规律的方法。数学中探索规律的过程,实际上是合情推理与演绎推理综合运用的过程,在这个过程中培养学生观察、分析、综合、归纳和推理等合情推理的能力,这也是“探索规律”的教育价值所在。虽然合情推理的结论具有或然性,但在推理过程中,大胆的设想,超乎寻常的猜想,往往孕伏着发明创造的潜质。
2.自主探究与合作学习相结合,注重学习主体性作用的发挥
学生是学习的主体,是本节课的另一大亮点。本课以“学生独立思考、自主探究规律——小组合作交流、发现规律——学生独立运用规律”为学习线索,让学生经历一个观察、对比、分析、归纳等发现规律的过程,学生成了学习的主人。如在计算器计算5道算式(1÷11=2÷11=3÷11=4÷11=)后,教师提出具有开放性、挑战性的问题“你发现了什么?”,充分发挥学生的主观能动性,变被动听为自主学。在学生独立探究的.基础上,组织小组合作学习,有利于学生在交流中进行思维碰撞,不断完善认知,发现规律,概括规律:商是无限循环小数,商的循环节是9、18、27、36…,即都是9的倍数;从被除数、除数的变化探寻与商的联系,循环节是被除数9倍;等。这样的教学既给学生一个独立思考的机会,又能借鉴同伴的发现结果,加深了学生的思考,突破了学生思维,同时培养学生的合作意识。让学生真正成为学习的主人,使课堂充满生命的活力。
师:我想继续和大家玩一个游戏,愿意吗?这个游戏叫“我的特异功能”。我需要小助手和我配合一下。(学生上台,教师出示下表)
因数因数积积的变化
师:(对一生)这是一张表格,你的任务就是根据老师的要求来填表、回答问题。其他同学帮忙看,注意看、注意听。
(小助手回答)
(小助手回答)
师:同学们,虽然我不知道原来的两个因数是多少,但我知道现在的积是多少,是××。不相信,你们算算看。
师:相信老师有特异功能吗?(不相信)那你们猜猜老师是怎么算出现在的积的?
生:我也能算出来,用上一行的积去乘6。
师:是吗?大家算算看。
(学生计算,表示同意)
师:我想采访一下这位同学,你怎么想到用上一行的积乘这个数的?(指第二个因数乘的数
)生:因为这个算式中一个因数不变,另一个因数乘6,所以积也同时乘6。
师:那如果乘7呢?
生:积也乘7。
师:如果乘99呢?
生:积也乘99。
生:可以把这个猜想用到实际中。
师:对,事实胜于雄辩,咱们可以举些例子。
(学生举例。一组学生用因数乘因数算出积是多少,另一组学生用猜想的方法算出积,并比较结果)
因数
因数
积
积的变化
29
46
1334
-
29
46×6
8004
1334×6
29×80
46
106720
1334×80
29
46×10
13340
1334×10
29×20
46
26680
1334×20
师:同学们,咱们任意举了几个例子,请大家仔细观察整张表格,你发现了什么?
生:刚才那位同学说的猜想是正确的。一个因数不变,另一个因数乘几,积也同样乘几。
生:是成立的。
师:口说无凭,咱们还是得用事实说话。
(学生自主举例,并在小组里交流)
开始的游戏中说有特异功能,只不过想考考大家。你们真不简单,我提议大家为自己的表现鼓鼓掌。
师:在所有的乘法算式里,其实都存在这样一个规律,这个规律是什么?
(学生齐答)
[反思]
教材分析:
本节课是在学生已经学学会用计算器进行计算的基础上,通过用计算器计算来探索与发现算式背后的规律。教材例题3,先让学生用计算器计算前面三题,然后进行观察比较、分析思考,找出算式中蕴含的规律,再根据规律直接填出后面四道算式的得数。本节课的重点是鼓励学生对算式及其得数的特点进行比较,从中发现一些数学规律。教学时,充分利用学生已有的经验,放手让学生通过自主探索、合作交流等方式,比较算式的特点,从而发现一些数学规律。
教学内容:
苏教版义务教育教科书四年级数学下册第42页例3和“练一练”,完成第43页练习七第5-8题。(第四单元第2课时)
教学目标:
1.使学生探索一些特殊算式计算的规律,能根据发现的规律写出同类算式或同类算式的得数,能用计算器验证一些算式计算得数的规律。
2.使学生经历用计算器计算、观察、比较和抽象、概括计算规律的活动,体会数学规律的发现过程,积累探索规律的经验,培养观察、比较和抽象、概括等思维能力,提升归纳推理能力。
3.使学生在发现一些特算式计算规律的观察中,感受数学的奇妙,产生对数学的好奇心,激发学生学习数学的兴趣和积极性。
教学重点:
用计算器计算、探索一些计算的规律。
教学难点:
发现、归纳算式的特点和蕴含的规律。
教学过程:
一、复习引入
1.师:上节课,我们认识了计算器,学会了用计算器进行计算。
出示题目:用计算器计算下面各题。
学生独立完成。完成后,指名学生回答,并说说计算时的注意点。
【设计意图】通过用计算器进行四则运算的计算,为课堂中用计算器探索规律作准备。
2.游戏激趣。
同学们,你们喜欢做游戏吗?我们用计算器玩“猜数字”游戏。
从“1—9”这9个数字中选一个你喜欢的数字记在心里,不能说出。接着,在你的计算器上连续输入9次,然后用它除以“12345679”,把得数告诉老师,老师就能知道你最喜欢的数字是几。同学们,相信吗?请你试一试。
【设计意图】利用游戏导入,激发学生的学习兴趣和求知欲。同时,也为新知设疑,为本节课的学习埋下伏笔。
3.导入新课。
今天我们要用计算器来寻找算式中的蕴含的规律,探索其中的奥秘。(板书课题:用计算器探索规律)
二、探究规律
1.教学例3。
出示第42页例3。
26640÷111=
26640÷222=
26640÷333=
学生读题,并要求用计算器独立计算。
交流汇报得数,教师板书。
26640÷111=(240)
26640÷222=(120)
26640÷333=(80)
2.观察比较,发现规律。
师:观察这三道题之间有什么关系,有没有什么规律呢?
请将下面两题和第一题比较,看被除数、除数和商是怎样变化的,你有什么发现?完成表格。小组讨论,交流发现。
交流:你发现什么规律吗?
学生1:第二道题和第一道题相比,被除数不变,除数乘2,商等于原来的商除以2。
学生2:第三道题和第一道题相比,被除数不变,除数乘3,商等于原来的商除以3。
学生得出:被除数不变,除数乘几,得到的商就等于原来的商除以几。(板书)
3.运用规律并验证。
引导:如果除数继续变化,商会怎样呢?这个规律适用于其他算式吗?(出示后四道题)
26640÷444=26640÷555=
26640÷666=26640÷888=
根据发现的规律,你能直接填出下面各题的得数吗?
学生直接填写得数。
提问:填写这几道算式的得数时,你是怎么想的?
填写的得数对不对呢?请你用计算器验算,看做对了没有。
4.归纳小结。
通过计算器计算,我们发现在除法算式里,被除数不变,除数乘几,得到的商等于原来的商除以几。反过来,被除数不变,除数除以几,得到的商等于原来的商乘几。
【设计意图】引导学生经历“计算器计算—发现规律—应用规律—计算器检验”的探索过程,初步体验除法算式中商的变化规律,体会计算器强大的计算功能,积累一些探索和发现简单规律的经验,感受数学的形式美和结构美,激发用计算器计算的兴趣。同时,帮助学生进一步加深对除法运算的理解,又有利于学生体验探索规律的过程,积累归纳、类比等数学活动经验,感受学习成功的喜悦。
三、巩固练习
1.完成“练一练”
出示第42页“练一练”。
111111÷37037=
222222÷37037=
333333÷37037=
444444÷37037=
666666÷37037=
999999÷37037=
(1)先让学生用计算器算出前三题的得数,交流并呈现得数。
教师板书:111111÷37037=(3)
222222÷37037=(6)
333333÷37037=(9)
(2)观察、比较算式中各数的变化。
(3)提问:比较这几道算式,你发现了什么规律?
学生发现:除数不变,被除数乘几,得到的商就等于原来的商乘几。(板书)
(4)应用规律完成后三题,并说说你是怎样想的。完成后,再用计算器验证。
【设计意图】让学生再次经历探索和发现规律的过程,并在这一过程中进一步体验由特殊到一般、由此及彼的认识过程,积累探索简单数学规律的经验,感受计算器的学习与应用价值,增强探索意识和创新意识。
2.完成“练习七”第5题。
出示第5题。
34×357-9018÷48
学生用计算器完成。输入过程中,输入要准确。
“开火车”的形式,指名学生回答。看谁回答得又快又好。
【设计意图】本题呈现的是一组由四则运算构成的计算流程图,学生按要求用计算器进行运算,有利于学生进一步巩固用计算器计算的步骤,形成必要的操作技能。
3.完成“练习七”第6题。
(1)出示题目。
要求学生结合方格中的数,观察每组算式的特点。
交流:你发现每组算式的特点了吗?各有什么特点?举例说一说。
引导说出:这里的每道算式里的数都是按表里各数排列位置的相应顺序列出的。每组里两道算式的数字和符号顺序正好相反,把其中一道算式的数字和符号的顺序倒过来,就是另一道算式。
(2)计算比较,发现规律。
让学生计算每道算式的得数并填写。
提问:比较各道算式的得数,你发现了什么现象?
引导:你能再写出一组这样的算式吗?自己再列出一组两道连加算式,算出得数,或者一组三位数连加的算式计算。
交流:你列的什么算式,得数是多少?
提问:这里的算式和得数符合你发现的规律吗?你对上面这些算式和计算有什么感受?
(3)分析表格,延伸思考。
大家感觉这里的计算非常有趣,
提问:你发现什么了吗?方格中横行、竖行和斜行的三个数的和是多少?
三个数的和都是15,三个两位数的和是165,三个三位数的.和是1665。它们之间有什么规律呢?感兴趣的学生课后可以讨论。
【设计意图】本题取材于我国古代神话传说中的“洛书”,它是世界上最古老的幻方,是我国古代劳动人民智慧的结晶。本题重在发展学生观察、比较、分析、类比、归纳的能力,感受数学的神奇和美妙,激发对数学学习的兴趣。
5.完成“练习七”第7题。
1×8+1=91234×8+4=
12×8+2=9812345×8+5=
123×8+3=987123456×8+6=
先出示左边三题的算式,让学生观察算式有什么特点。
根据规律,直接写出右边算式的得数,再用计算器验证。
提醒:乘加算式要注意运算顺序。
【设计意图】通过练习,在巩固计算器的使用方法的同时,让学生进一步感受计算器的作用,并培养学生观察、分析、推理的能力。
6.完成“练习七”第8题。
出示第8题,
1×9+2=
12×9+3=
123×9+4=
1234×9+5=
×+=
×+=
让学生先用计算器算出前四题的得数,再直接填写后两题横线上的数。
【设计意图】让学生通过计算,观察,总结出算式各部分的关系,进一步巩固用计算器进行四则混合运算的步骤和方法,积累一些类比与归纳推理的经验,发展初步的合情推理能力。
7.科学探索。
学生选择一个三位数进行计算,发现有没有什么奇妙的现象。如果还没有发现,再继续这样算。
提问:你发现了什么奇妙的现象?
引导:任何不同的数都会这样吗?再任意找一个三位数这样试一试,看看结果这样。
【设计意图】这是一道开放性的题目,意在巩固学习的新知和培养学生对知识拓展延伸的应用能力。学生任意写的数字可能计算两次或三次就可以找出规律,或者更多次才能找出规律。因此,在计算的过程中,要充分鼓励学生,树立能够解决问题的信心。
8.游戏揭秘。
师:同学们还记得老师在课的开始和大家做的“猜数字”游戏吗?
完成本题后,你就知道其中的奥秘了。
出示题目。111111111÷12345679=
222222222÷12345679=
333333333÷12345679=
444444444÷12345679=
555555555÷12345679=
学生用计算器计算。你发现了什么规律,和同学说一说。
运用规律,你还能再说出一些算式吗?
【设计意图】此环节与本课的游戏激趣相呼应,揭秘题中的奥妙。联系算式之间的规律,学生豁然开朗。鼓励学生说出更多的算式,培养学生的应用能力。
四、全课总结。
这节课你有哪些收获?与同学们分享。
借助计算器探究规律的目的是什么?仅仅是为了训练学生对键盘的熟悉程度吗?抑或是掌握计算的准确度?这节课应该怎样上?两节课的计算器教学已经结束,我却陷入了沉思。
上节课学生用计算器算出的`22222222×55555555的结果五花八门,我曾经提示:“你看,这么多的2和这么多的5相乘,能不能想个巧妙的办法,从简单的算式入手,尝试解决呢?”没想到,还真有几个孩子说出先从2×5=10开始,看能否找到积的排列规律!!
于是,有趣的算式出现了——
2×5=10
22×55=1210
222×555=123210
2222×5555=12343210……
“我好像发现规律了!”我听到几个孩子小声嘟囔着。
”积当中最大的数字就是两个因数的位数,然后再从大到小排列到0就行。“赵洪涛说出了自己的想法,虽然不是特别准确,但是规律基本上是正确的。在此基础上,我又引导学生进行了总结:从1开始,因数是几位数就写到几,倒过来再写到1,最后加一个0。
…………
一节课下来,孩子们”玩“得挺高兴,但是学生对于探索规律的推理问题还不够明晰——光注重积的表面的变化,并没有深层次的理解和掌握。因此,个人认为,“用计算器探究规律”应该作为一节完整的课为学生呈现,而且重点应该在于引导学生探索出计算背后的本质规律,提高学生的推理能力。要给学生充分经历观察、猜想、归纳和验证的时间,这样学生学到的才不只是结论,更是一种方法。
本课时主要引导学生借助计算器探索积的一些变化规律和商不变的规律,以及运用这些规律进行简便计算和解决一些简单的实际问题。在学习这部分内容之前,学生已经学习了整数乘、除法和使用计算器进行计算,有了一定的`学习基础。因此,重点应放在对规律的探索方面,教学完本单元内容,我有以下几点体会:
1、教学时要留足够的时间,让学生发现探索规律,并且有独立思考的时间。上课时有些思维敏捷的孩子会一下子发现规律,并脱口而出,于是,我就让这个学生来说说是怎么想的,给还处于懵懂的孩子一些提示,小结规律后,再通过学生自己写算式来验证发现的规律,这样就加深学生对规律的认识。当然,对那些“聪明”孩子的上课习惯还是要加强培养。
2、将课堂延伸到课外,在上课前,先让学生在家里算一算例题,找找规律,这样可以让学生带着问题上课,提高课堂效率,也给学生留出了充足的时间发现规律。
3、克服思维惰性,加强估算能力的培养。发现和总结出规律后,就可以进行简便计算,一些较难的两位数乘两位数可以很快得出答案,但有些孩子为了避免犯错,会回避用规律来进行计算,而是采用比较繁琐的列竖式。出现这种情况可能有两种原因,一种是课堂上对规律的感知还不够,要适当的给这部分孩子增加练习量,进一步感受规律,提高规律掌握的熟练度。另一种是,怕粗心犯错,对于这部分孩子则可让他们算完后,进行估算,这样有利于他们养成自觉检查的好习惯,通过估算也能发展学生的思维能力和数感。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwen/moban/359552.html