首页 > 范文 > 模板

解方程数学教案设计(汇总15篇)

解方程数学教案设计(汇总15篇)



教学工作计划可以帮助教师统筹安排教学任务,提高课堂效率。以下是一些教学工作计划的典型范例,供大家参考和学习。

小学五年级数学《列方程解含有两个未知数的应用题》教案设计

1.使学生初步学会分析稍复杂的两步计算的应用题的数量关系,正确列出方程.。

2.学生会找出应用题中相等的数量关系.。

教学重点。

训练学生用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的应用题.。

教学难点。

分析应用题等量关系,并会列出方程.。

教学过程。

一、复习准备。

(一)写出下面各题的式子.。

1.比的3倍多15。

2.比的4倍少2。

3.2个与34的和。

4.5个与0.6的3倍的差。

(二)解答复习题。

少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人.合唱队有多少人?

(学生独立解答)。

23×3+15。

=69+15。

=84(人)。

答:合唱队有84人.。

二、新授教学。

(一)导入新课(改复习为例4)。

少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?

1.比较:例4与复习题有什么相同点和不同点?

相同点:“合唱队的人数比舞蹈队的3倍多15人”这句话没有变;

不同点:复习题已知舞蹈队人数求合唱队人数,

例4是已知合唱队人数求舞蹈队人数.。

(二)教学例4。

1.画线段图分析题意。

2.看图思考:舞蹈队人数和合唱队人数有什么关系?

3.学生汇报讨论结果:舞蹈队人数的3倍加上15正好等于合唱队人数.。

(根据:合唱队人数比舞蹈队人数的3倍多15人)。

4.列方程解答。

教师板书:

解:设舞蹈队有人.。

答:舞蹈队有23人.。

5.思考:还可以怎样列方程?(或)。

引导:例题的方法最简单,解题时要用简单的方法解.。

(三)变式练习。

少年宫合唱队有84人,合唱队的人数比舞蹈队的人数的4倍少8人,舞蹈队有多少人?

三、课堂小结。

今天这节课你学到了什么知识?在学习中你有什么感想?

四、巩固练习。

(一)只列式不计算.。

1.图书室有文艺书180本,比科技书的2倍多20本,科技书本.。

2.养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡只.。

(二)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只.去年养兔多少只?

(三)一个等腰三角形的周长是86厘米,底是38厘米.它的腰是多少厘米?

五、课后作业。

六、板书设计。

例4.少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?

解:设舞蹈队有人.。

答:舞蹈队有23人.。

教案点评:

分析数量之间的等量关系,学生已有一定的基础,本节主要训练学生掌握根据题目所给的不同条件,找等量关系的方法。

首先引导学生用多种方法解答,并通过观察、比较、分析,从众多的等量关系中找出最佳思路,使学生学会从多种角度思考问题,培养学生思维的灵活性。

小学数学六年级《用字母表示数解方程》教案设计

用字母表示数,是代数与算术的一个重要区别,用字母表示数是代数的一个重要特点。有了用字母表示数,使具有相同性质的不一样数学问题都能够用同一个式子表示出来,使数量关系的表示简洁明了,更具有普遍意义了,给研究和计算带来了极大的方便。本节教材在现实情境中进一步理解用字母表示数,掌握用字母表示数,让学生在探索现实世界数量关系的过程中,建立符号意识。

在小学数学中,已经渗透了用字母表示数的思想,并已开始用字母表示计算法则和公式,所以学生较容易理解。初一学生具有好胜、好强的特点,班级中已初步构成合作交流、敢于探索与实践的良好学风,学生间相互评价、相互提问的互动的气氛较浓。

苏霍姆林斯基说过:“人的心灵深处,都有一种根深蒂固的需要,就是期望感到自我是一个发现者、研究者、探索者。”所以教师要尊重学生的主体性,精心设计知识的呈现形式,营造良好的研究氛围,让学生置身于一种探索问题的情境中,以激发学生的创新潜能和实践本事,为学生的可持续发展打下基础。为此,我没有利用青岛版教材的情境图,而是利用学生熟悉的情景,开学了,每人需要2个本,3个人需要几个本?4个人呢?10个人呢?100个人呢?照此算下去,什么时候能算完呢?这时学生提出问题了,能否用一个简单的式子来代替呢?有的孩子提出用三角符号,有的孩子说用字母,这样自然就产生了用字母来代替数,学生也就顺其自然的明白了在算很多同样的东西时,无法用算式表示完的时候,就产生了用字母来表示。那里的字母能够表示哪些数呢?用字母来表示有什么好处呢?经过刚才一系列的探讨学生自然就心领神会了。

将本文的word文档下载到电脑,方便收藏和打印。

一元一次方程的解法数学教案设计【】

3.使学生初步养成正确思考问题的良好习惯。

和难点。

课堂设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题。

例1某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉。

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案。这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)。

三、课堂练习。

2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

四、师生共同小结。

首先,让学生回答如下问题:

1.本节课了哪些内容?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆。

五、作业。

1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

苏教版五年级数学《方程的意义》教案设计

教学目标:

1、借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。

2、会用方程表示数量关系。

3、培养学生观察、描述、分类、抽象、概括、应用等能力。

4、感受方程与现实生活的密切联系,体验数学活动的探索性。

重点:理解方程是含有未知数的等式;

难点:方程的意义抽象的过程。

课前谈话:渗透平衡和等量(谈体验)。

教学过程:

一、激情导入。

出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。

二、探究新知。

1.对不同的式子进行分类(不要有任何要求)。

让学生先独立思考,然后小组合作交流自己的想法。

2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。

让小组的代表说说自己组是怎样分类的?为什么这样分类?

3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)。

4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)。

5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。

6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。

7.生举例。

8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。

9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?

10、判断两句话:所有的方程都是等式,所有的等式都是方程。

11、画图表示方程与等式之间的关系。

三、应用练习。

1.判断下列式子是不是方程。

2.看图列方程。

3.根据题意列方程。

四、拓展延伸。

1、谈谈自己在知识和情感上的收获。

2、送给同学们一个方程:天才+x=成功。

《实际问题与方程》数学教案设计

预设5:

解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。

地球表面积-海洋面积=陆地面积。

预设:第一种方法最好,解方程的过程最简单。

师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。

师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?

(3)总结方法。

1、设(找出未知数,用字母x表示)。

2、找(找出题目中的等量关系)。

3、列(根据等量关系列出方程)。

4、解(运用等式的性质解方程)。

5、验(将解出的结果代入方程检验)。

6、答(完整地写好答话)。

三、巩固练习。

1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()。

a、解:设梨树为x棵,则苹果树为5x棵。

b、解:设苹果树为x棵,则梨树为5x棵。

通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。

2、找出下列各题中的等量关系。

小学五年级数学《列方程解含有两个未知数的应用题》教案设计

在小学数学教学中,列方程解应用题是难点。这一部分内容融入了等式的性质,利用四则运算各部分的关系,有助于对所学的算术知识进行巩固和加深理解,初步渗透代数的思想,然而在这一部分教学中存在一定的难点。

一、审清题意:

审题,理解题意。即全面分析题目中的已知量、未知量及二者之间的关系。特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等。

二、确立未知数:

三、寻找等量关系:

“含有未知数的等式称为方程”因而是“等式”是列方程比不可少的条件。所以寻找等量关系是解题的关键。常见的等量关系有以下几种:

1、总量相等;2、成倍数相等;3、按公式相等;

小学常用数量关系总结:

简易方程数学教学设计

一、感受天平的平衡现象,悟出等式的性质变化。

在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。

二、等式性质解方程——初步感悟它的妙用。

在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。

在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。

1、从教材的编排上,整体难度下降,有意避开了,形如:45—x=2324÷x=6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现x前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出x在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答x在后面这类方程的解答方法,就是等号二边同时加上x,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。

2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充x前面是除号或减号的方程的解法。要教他们列方程时怎么避免x前面是除号或减号的方程的出现等等。

《用数学》教案设计

教科书第71—72页的例1、“试一试”和“练一练”、练习十四的第1-3题。

1.教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。

2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心。

感受“转化”策略的价值,会用“转化”的策略解决问题。

会用“转化”的策略解决问题。

;学生每人一张例1的格子图。

一、创设情境,感知策略。

1.谈话导入。

(分别演示蝴蝶平移的过程,第二幅图顺时针和逆时针分别旋转一次,第三幅图从左往右顺时针平移一周的过程)。

提问:(1)蝴蝶是按怎样的顺序变化而来的?

(2)花环两次变化又是怎样形成的?

(3)最后一幅又是怎样变化的呢?

学生回答,师依次板书:平移,旋转,顺时针,逆时针。

二、合作交流,探究策略。

1.出示例1。

提问:这两种平面图形,我们以前学过吗?(没有)你觉得它们象什么呢?(生发挥想象力回答,但要说明的是平面图形。)。

2.引导交流。

提问:你能从图上准确地数出它们的面积分别是多少吗?(不能)面积会相等吗?请同学们4人一小组讨论,并可以在刚发下的作业纸上涂涂画画,验证你的结论。

小组交流,教师巡视,并指导。

3.指导验证。

师:你们组是怎么想的?指名回答。你在观察这两幅图的时候有什么发现吗?

学生说想的过程,并投影出示学生的作业纸。

(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)。

教师及时评价并用演示刚才学生说的过程。

提问:这两幅图经过旋转和平移后都变成了什么图形?(生:长方形。)。

提问:变成长方形后它们的面积相等吗?为什么?(生:相等,长和宽一样,所以面积一样。)。

教师再次演示变化过程,提问:在两幅图变化的过程中,什么不变?(面积)都把它变成了谁的面积?(生:长方形。)。

小结:因为我们无法一下子看出这两个平面图形的大小,但分别把它们转化成一个长方形后,我们就能比较这两个图形的大小了。在解决问题的过程中,我们经常会用到这样的策略——转化。(板书:解决问题的策略——“转化”)。

三、应用策略,归纳方法。

1.谈话:刚才,我们运用转化的策略把不规则的图形变成规则图形来比较大小。在有关平面图形的计算中经常会用到“转化”的策略。请同学们试着来解决以下问题。

(1)练习十四第2题的左边两幅图。

学生独立思考后口答,教师相机演示。

(2)“练一练”右边的图形和练习十四第3题的第一幅图。

提问:你能用比较简便的方法快速地求出图形的周长吗?

学生先独立思考,然后和同桌交流。

个别学生介绍自己的方法,教师相机演示。

小结:在解决这些问题的过程中,我们都用到了怎样的策略?(转化)我们要把复杂的图形转化未为简单的图形,具体地说又是用到了以前学习的哪些知识呢?(平移和旋转)。

四、回顾知识,体验转化。

1.谈话:其实我们以前学过的知识中,很多都运用了转化的策略,哪位同学来说说看。

指名回答,生可能会说:1.推导三角形公式时,把三角形转化成平行四边形。2.推导梯形时把梯形转化成平行四边形。3.推导圆面积时,把圆面积转化成长方形。4.计算小数乘法时把小数乘法转化成整数乘法。5.计算分数除法时把分数除法转化成分数乘法等等。

在学生说的过程中请学生说说推导的过程,并相应演示推导过程。

小结:看来,“转化”的确是一种非常重要的解题策略,在刚才的交流和演示的过程中,你觉得这种策略有什么优点?(学生交流后教师相机板书:化复杂为简单,化未知为已知,化不规则为规则------)。

五、拓展运用,提升策略。

1.出示试一试:计算1/2+1/4+1/8+1/16。

提问:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。(2)相邻的分数是什么关系?(后一个是前一个的1/2)。

师:我们一起来画图表示看看。师根据题目依次画图。

师:这题我们又可以怎样转化呢?学生看图解答。

指名回答。1-1/16=15/16。

(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)。

小结:在解决这个分数加法的计算题时,我们借助图形来分析问题,把复杂的算式变成了简单的算式。这也是运用了“转化”的策略——数形结合。(板书)。

3、出示:比较大小:16/17和35/36。

你准备怎样比?先和同桌说一说,再组织交流。体会:异分母分数大小比较,一般要通分后比较大小,通分很麻烦,现在只要转化成比较1/17和1/36的大小就可以了。

2.谈话:在解决一些稍复杂的实际问题时,有时我们也可以用“转化”的策略思考问题将复杂问题变得简单些。请同学们看这一题:

出示练习十四第1题。

(1)学生读题理解单场淘汰制的比赛规则并看懂图的意思。

(2)提问:什么是单场淘汰制?你能结合示意图来说说淘汰赛的过程吗?你会列式计算吗?(学生列式计算后进行解释。)。

(3)提问:如果不画图,有更简便的计算方法吗?(提示:不管第几轮,每场比赛都要淘汰几支球队?到决出冠军为止,一共要淘汰多少支球队?那么一共要比赛多少场?这样看来求比赛了多少场就转化成了什么问题?)。

(4)如果有64支球队,产生冠军一共要比赛多少场?

3.出示练习十四第2题的第3幅图。

学生先独立思考,然后指名学生交流自己的想法,教师及时评价并演示。

4.出示练习十四第3题的第2幅图。

要求图形中红色部分的周长是多少,你有什么好方法?

学生独立思考后解答(思路:转化成2个圆的周长),集体校对。

小结:谁来说说我们是怎样运用“转化”的策略来解决这两个问题的?

六、课堂小结。

今天我们学习的解决问题的策略是什么?“转化”随时随地都在我们身边,你认为在什么时候采用“转化”的策略能较好地解决问题?生回答。

七、课堂作业:完成补充习题相关内容。

解决问题的策略——转化。

平移转化成体积相等的长方形。

旋转(顺时针,逆时针)不规则——规则。

s三角形——s平行四边形复杂——简单。

s梯形——s平行四边形未知——已知。

s圆——s长方形不熟悉——熟悉。

------。

小数乘法——整数乘法。

分数除法——分数乘法。

《用数学》教案设计

通过学习,培养学生分析能力和解决问题的能力。

初步培养学生提出问题、思考问题、解决问题的能力。

一、复习。

1、口算:

3+74+95+67+812+6。

2、计算:

二、新授。

1、教学例4。

出示挂图。

问:你看到了什么?请你仔细看看,你发现了什么问题?

师指出:对评比牌前面的.灌树挡住了,你有办法知道每个班红旗获得情况吗?

2、小组讨论。

教师要注意引导学生观看条件。

3、小组汇报。

如:二(2)班16-3=13。

注意:强调让学生通过多种方法进行计算。

4、问:谁知道二(1)班、二(2)班得几面红旗呢?

小组讨论,师生共同总结出:没办法知道。因为被树挡住了。

问:那他们可能得几面红旗呢?

你是在怎么知道的?

三、练习。

1、p23做一做。

2、练习四第1-4题。

教学反思:

《用数学》教案设计

1.使学生进一步理解乘数是两位数的连续进位乘法的算理,掌握两位数的进位乘法的计算方法。

2.培养学生的分析推理能力。

理解乘数是两位数的连续进位乘法的`算理。

掌握两位数的进位乘法的计算方法。

一、自主探索,领悟知识。

1.创设情景,提出问题。

一个牌子写着“门票每人48元”,有7名同学进入博物馆参观展览。

(1)学生根据以上情景提出数学问题。

2.改变情景,引出新课。

改变条件:一共进72人。学生根据新情景提出问题。

(1)教师根据学生提出的问题有选择性地解答并板书:48×72。

(2)小组研究计算方法。

(3)小组汇报。

(4)教师根据情况,重点指出以下两个方面:

计算方法与前面的相同,相同的数位要对齐。不同的是48×72需要连续进位,要特别注意。

(5)练习:683745。

×34×82×46。

2.学习例4。

出示例题。

(1)让学生读题理解题意,再口头列出算式。

(2)让学生独立试做。

(3)请一名学生展示计算过程,并说一说算理。

(4)其他学生补充完整,必要时教师给予指导。

(5)练习215309。

×32×25。

二、巩固反馈,深化知识。

1.第11页的做一做。

2.判断。

(1)57(2)306(3)193(4)403。

×35×35×36×35。

25515301158215。

17112043791612。

196513570494816335。

板书:用两位数乘(连续进位)。

48×72=3456114×59=6726(分)。

48114。

×72×59。

961026。

336570。

34566726。

答:要用6726分。

《用数学》教案设计

教学目标:

1、使学生理解除数是一位数,商是整十、整百数的口算方法,学会正确、熟练地进行计算。

2、引导学生将掌握的口算乘法知识迁移到口算除法中去,培养学生迁移类推的能力。

3、培养学生的语言表达能力。

教学重点:

能正确进行口算。

教学难点:

掌握口算除法的思维方法,理解算理。

教具准备:

口算卡片、小棒。

教学过程:

一、学前准备。

1、口算。

教师出示口算卡片,学生抢答。

2、口答。

60里面有几个十?800里面有几个百?240里面有几个十?

3、把6根小棒平均分成3份,每份是多少根?

二、探究新知。

1、学习教材第11页例1。

(1)教师:我们来帮助小朋友解决问题吧。

教师板书:60÷3。

(2)尝试解答60÷3。

(3)交流、汇报计算方法。

(4)动手操作。

请同学们拿出6捆小棒,分一分。

(5)说说谁的.方法最简单,你喜欢用哪种方法进行口算。

(6)同桌交流60÷3的口算过程。

教师指导,帮助学习有困难的学生。

2、学习600÷3=。

(1)板书:600÷3=。

师:这道题应怎样想呢?

(2)尝试口算600÷3=。

(3)提问:谁能说出600÷3的口算方法。

3、学习教材第12页例2。

板书:120÷3。

(2)观察被除数与刚才所学例题中的被除数有什么不同。

(3)引导学生独立口算。

(4)说一说思考的过程。

三、课堂作业新设计。

1、教材第11页“做一做“。

(1)集体看“做一做“。

(2)观察每组中上下两题的异同。

(3)找出其中的运算规律。

(4)独立完成。

(5)验证其运算规律是否正确。(当被除数扩大到原来的10倍,除数不变时,商也扩大到原来的10倍)。

2、教材第13页练习三的第1―3题。

(1)独立完成。

(2)边做边口述口算过程。

四、思维训练。

1、列式并写出得数。

(1)6000除以3的多少?

(2)3600除以4的多少?

2、抢答。(口算卡)。

《用数学》教案设计

1.让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

2.让学生在学习过程中加深对转化策略的认识,增强策略意识,培养思维的灵活性。

3.感受转化策略对学习的作用,能有意识、有目的、适当地运用转化策略。

掌握用转化的策略解决分数问题的方法,增强策略意识。

根据具体问题,确定转化后要实现的目标和转化的具体方法。

讨论、观察。

多媒体课件。

老师这儿有一个图形,你能求出阴影部分的面积吗?你是怎么求的?为什么这样做呢?通过转化,我们把不规则的图形转化为了规则的图形。今天我们继续学习如何用转化的策略解决问题。

出示练习十六第4题,学生在书上独立完成。交流汇报时说说自己是如何思考的。

提问:在刚才的做题、交流过程中,你有什么感受或发现?

1.教学例2。

课件出示例2,学生观察。提问:你有什么发现?你会做这道题吗?每个学生用自己的方法独立解答,交流汇报,说说自己是怎么做的。

能不能转化成更简单的算式?

出示题目右边的正方形图,提出要求:你能说说图中哪一部分表示这几个数的和吗?

引导:看图想一想,可以把这一算式转化成怎样的算式计算?

提问:这时该怎么做呢?学生独立列式计算。

和刚才的方法比较,这2种方法哪种更简单呢?你有什么体会呢?

小结:在解决问题时,要善于从不同的角度灵活地分析问题,有时候画图可以帮助我们找到合理的转化方法。

2.练一练。

1.练习十六第5题比较几种方法哪种更简单呢?你有什么体会呢?

2.练习十六第6题。

出示问题,指导学生理解图意。

明确图中每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。单场淘汰制就是每场比赛都要淘汰1支球队。

如果不画图,有更简便计算方法吗?

进一步提问:如果有64支球队,产生冠军一共要比赛多少场?

3.练习十六第7、8、10题。

弄清27+19的和就是最大长方形的长与宽的长度之和。

作业布置练习十六第9、11、12、13题。

《用数学》教案设计

教学目标:

1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。

2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。

3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

重点难点:

理解数对的含义,能用数对表示位置。

课前准备:

课件。

教学过程:

一、谈话导入。

生:从右向左数第4排的第2个。

师:谁还想说?

生:从左向右数第2排的第3个。

师:还有不同的说法吗?

生:从后往前数,第4排的第3个。

师:怎么同一个人的位置有这么多种说法呢?

生1:人们是从不同的角度和不同的方位观察的。

生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。

生:有点乱。

师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)。

数学设计教案

1、复习6以内数的组成,能正确地记录6以内数的分合形式。

2、练习5以内的加减运算,能看算式报出答案。

3、能大方地在集体面前回答问题。

1、经验准备:幼儿已学过6的组成和5的加减。

2、幼儿用书1-21页。

(一)游戏:碰球。

——鼓励幼儿前一已有经验大方地在集体面前回答。

——师幼共同玩“碰球”的游戏。

1、教师出示数字卡片“5”,请幼儿看数字卡片,要求幼儿口报的数字和老师报的数字合起来是“5”。

2、游戏2—3遍后,可更换出示数字“6”。“4”,提醒幼儿口报的数字要和老师报的数字合起来与卡片上的数字一样多。

(二)游戏:开快乐火车。

——师友共同玩游戏,鼓励幼儿快速地报出算式卡片上的得数,要求既要算得快,又要算的对:嘿嘿,我的火车就要开,幼儿:几点开?教师出示算式:你们猜?幼儿:()点开。

(三)幼儿操作活动。

——看分合式填空格。引导幼儿观察圆点和数字分合式。启发幼儿在空格中填写相应数量的圆点或数字,并说一说分合式。

——看算式进行5以内加减运算。

——看图列算式。

——算式与答案连线。

(四)活动评价。

——鼓励个别幼儿大方地在集体面前介绍自己的活动与记录,其他幼儿对照检查自己的操作活动。

——展示幼儿的操作材料,表扬画面整洁、正确的幼儿。

列方程解数学教案

找出应用题中的等量关系。

1.口头解下列方程(小黑板出示)。

x-35=40x-5×7=40。

15x-35=4020-4x=10。

2.出示复习题。

(1)读题,理解题意。

(2)引导学生用学过的方法解答。

(3)要求用两种方法解答。

(4)集体订正:

解法一:35+40=75(千克)。

解法二:设原来有x千克饺子粉。

x-35=40。

x=40+35。

x=75。

答:原来有75千克饺子粉。

二、探究新知。

1.教学例1。

(1)读题理解题意。

(2)提问:通过读题你都知道了什么?

(3)引导学生知道:已知条件和所求问题;题中涉及到“原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:

原有的重量-卖出的重量=剩下的重量。

(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)。

(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的.重量乘以卖出的袋数)把上面的等式改为:

原有的重量-每袋的重量×卖出的袋数=剩下的重量。

(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。

(7)引导学生根据等量关系式列出方程。

(8)让学生分组解答,集体订正时板书如下:

解:设原来有x千克饺子粉。

x-5×7=40。

x-35=40。

x=40+35。

x=75。

答:原来有75千克饺子粉。

(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。

小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)。

2.教学例2。

小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?

(1)读题,理解题意。结合生活实际帮助学生理解“付出”、

“找回”等词的含义。

(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)。

(3)组织学生分组讨论。

(4)学生自己解答,教师巡视,个别指导。

(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。

(6)教师总结订正。如果发现有列:2x=6-0.4和2x+0.4=6两种。

方程的,教师要引导学生比较那种方法简单,并强调用较简单的。

方法解答。

3.学生自己学26页上面一段话,回顾上边的解题过程,总结列。

方程解应用题的一般步骤,总结后投影出示:

(1)弄清题意,找出未知数,并用x表示;

(2)找出应用题中数量间的相等关系;

(3)解方程;

(4)检验,写出答案。

4.完成26页的“做一做”

小黑板出示:商店原来有15袋饺子粉,卖出35千克以后,还剩。

40千克,每袋面粉重多少千克?

(1)学生独立解答。

(2)集体订正,强化解题思路。

三、巩固发展。

1.口答:列方程解应用题的关键是什么?

2.完成练习七第1题,在书上填写,集体订正。

3.按列方程解应用题的方法步骤学生独立做练习七4题,集体订正结果。

四、全课总结:引导学生总结本节课学习了什么知识。

五、布置作业。

练习七第2题、3题。

六、课后记事:

七、板书设计。

例1解:设原有的为x千克。

原有的重量-卖出的重量=剩下的重量第一步:弄清题意,找出。

x-5×7=40未知数,并用x表示;

x-35=40第二步:找出数量之间的。

x=35+40相等关系,列方程;

x=75第三步:解方程;

答:商店原有75千克饺子粉第四步:检验,写出答案。

相关内容

热门阅读
随机推荐