教学工作计划是教师根据课程标准和学生实际情况进行综合设计和安排的工作。以下是小编为大家整理的一些制定教学计划的工具和资料,供大家参考使用。
加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。
本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。
1、在复习引用中,巩固学生的思维基础。
通过一组口算练习,让学生明确能够凑整十或整百数的`两个数加起来比较简便,这个为后面学习结合律打下基础。
2、大胆猜想,自主探究,培养学生独立思考的能力。
在教授新课的过程中,我通过提问、设疑,让学生观察—猜测—举例—验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。
3、多层次的巩固练习,有效提升学生的思维。
整个教学过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
1.注重教学目标的整合化。
根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。
2.注重教学内容的现实性。
新课标里曾指出,教学时应从学生熟悉的情境和已有的知识出发进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。
来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。
(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变。
将本文的word文档下载到电脑,方便收藏和打印。
1、教材分析。
“加法交换律和加法结合律”是国标版苏教版小学四年级上册第八单元中的第一课时,它是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。
2、目标分析。
(1)教学技能目标:利用学生熟悉的情境引入教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。
(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,进行比较和分析,发现并概括出运算律。
(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。
二、说教学过程。
(一)探索加法交换律:
这部分分成4步进行。
1、感知规律。
课的开始出示第56页的例题(前两幅图),通过解决“参加跳绳的一共有多少人?”得出一个等式,从而导入新课,进行加法交换律的研究。
(设计意图:用学生身边事情引入新知,并为下而面的探究呈现素材。)。
2、验证规律。
(1)组织学生观察这个等式的'特点,然后自己照样子仿写等式。
(2)运用自己写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。
(设计意图:丰富学生的表象,进一步感知加法交换律。)。
3、概括规律。
(1)通过自己仿写式子,独立思考或小组讨论,引导学生概括出规律,尝试用语言表述。
(2)用自己喜欢的形式表示出来着重强调用字母来表示加法交换律的简便性。
(设计意图:帮助学生构建了简单的数学模型,使学生体会到符号的简洁性,从而发展了学生的符号感。)。
4、巩固规律。
(设计意图:一个规律教授结束就配以针对性的练习,既有利于概念的正确建立,同时也及时地巩固了新知。)。
1、感受规律。
在学生解决“三个项目共得多少分?”过程中得出等式。学生交流各自列式,并让学生说清列式理由。选择两种不同列式,探索规律。
(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)。
2、验证规律。
(1)教师出示两组题目,判断左右两边是否可以写等号,分别算一算。
(2)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。
3、揭示规律。
(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?
(2)按照这种规律,你还能写出这样的算式吗?
(3)用字母表示这样的规律。
(设计意图:多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)。
4、巩固规律。出示针对结合律的一些填空,巩固新知。
三、实践应用。
1、书面训练。
(1)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。
(2)想想做做5。
(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)。
2、活动训练。游戏“找朋友”
(1)如:师说出“2”,学生要找出它的好朋友“8”,因为“2”和“8”和是“10”,教师配合学生完成。
(2)找出与一个数和是100的数。同学配合完成。
(设计意图:让学生在游戏中意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。)。
1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学重点。
理解加法的运算律。
教学难点。
概括加法的运算律,尝试用字母表示。
教学过程。
1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。
板书算式。
2、比较这两道算式有什么不同?
3、得数相同的算式我们可以用等号把它们连成等式。
4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。
5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。
6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母。
学生思考,充分发表自己意见,教师给予肯定。
7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:
引出:加法交换律(板书)。
8、小练习:填数。
3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。
4、出示书上题目,说一说,算一算。
5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。
6、你能不能再举几个例子?学生举例。
8、小练习:填数。
2、课后练习:
(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。
(2)比较体会运算律的作用,知道凑整百。
(3)凑整百小练习。
加法的交换律和结合律一课属于数的运算中的一个重要内容。是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。
新教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。
片断一:
师:谈话:天气渐渐凉了,我们学校又要组织大家进行冬锻炼比赛了,冬锻炼比赛有些什么项目呢?看,同学们正在紧张的训练呢。
(出示情境图),从图中你获得了哪些信息?你能提出哪些用加法计算的问题?
根据学生的回答,板书:1、参加跳绳活动的有多少人?
2、参加活动的女生有多少人?
3、参加活动的一共有多少人?
……。
【反思】。
从课堂的引入老师就以最贴近生活的冬季锻炼比赛为题,一下子激起了学生学习的“兴奋点”,学生提出了很多加法问题,从而很自然的进入了后面的学习。
片断二:
下面我们先来解决第一个问题,求跳绳的有多少人,怎样列式计算?
指名口答,教师板书:28+17=45(人)。
追问:还可以怎样列式?在学生回答后,教师完成板书:17+28=45(人)。
这两个算式都是求的什么?它们的结果怎么样?那你能用一个符号把他们连接起来吗?(等号)板书:28+17=17+28,这是一个等式,我们一起来读一读。
仔细的观察一下这个等式,在等号的两边,什么地方相同,什么地方不同?
【反思】。
在这样一个教师引导,学生进行比较、分析、举例、验证,表达的过程中,充分发挥了学生主体的作用,也让学生感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了学生自主探索,推导,验证的一个完整过程。
新教材的目标设定及教学过程,更多的体现了动态生成,寓数学思考,探究,发现于一体的数学活动过程,教师只有把握住了这个精髓才能去上好课,发展学生的综合能力。
教学参考书中对加法交换律和加法结合律是这样定义的:“在数学基础理论中,加法交换律和结合律通常是以集合论为依据加以证明的。此外,也可以用计数公理“计数的结果与计数的顺序无关”来说明:任意两个数a与b相加,不论是a+b(相当于先数a,再数b),还是b+a(相当于先数b,再数a),结果都一样。类似地,任意三个数相加,不论是先把前两个数相加,还是先把后两个数相加,仍然只是计数的顺序不同,所以不影响计数的结果。”
从这段文字中,我可以理解为:加法交换律和加法的结合律其本质是一样的,无论是计算顺序改变,还是计算结果改变,其本质是计算的结果没有发生改变。事实上,在简便计算中,加法的交换律和结合律经常是同时使用的。出于这样的理解,我在课堂上并不是非常的重视加法交换律和结合律之间的区别。由于自己对教材的理解偏差,学生作业本中有这样一道题目:根据56+72+28=56+(72+28,填空。呈现了以下的题目:++=+(+)其实,题目的本意是要求学生根据加法结合律来填写,由于学生对加法交换律和加法结合律的本质区别没有完全弄清楚,因此学生的答案五花八门、错综复杂起来:答案一、12+13+14=14+(12+13)答案二、12+13+14=13+(12+14)答案三、12+13+14=12+(13+14)。从这些答案中我们不难发现,学生想当然的认为,这个算式中的所有加数都是可以随便交换的,我想怎么交换就怎么交换,反正最后的和是不变的。当然从教参大范畴的定义来说也是无伤大雅的,但是作为我们初学加法的运算定律,这样模糊的教学是有欠妥当的。
当问题出现时,我们应该想办法去弥补,而不是寻找冠冕堂皇的借口。因此,我安排了以下环节:
3、观察,说说你的新发现。通过观察,学生发现了它们的相同点和不同点,进而认识到加法加法结合律只是改变了运算的顺序,并没有改变加数的位置。
通过以上环节的比较,学生清楚地明白了,加法交换律和加法结合律之间的区别。从而更正了它们之前的错觉。
1、让学生在经历探索加法交换律和加法结合律的'过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
理解加法的运算律。
概括加法的运算律,尝试用字母表示。
一、教师适当引导,进入新知。
1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。
板书算式。
2、比较这两道算式有什么不同?
3、得数相同的算式我们可以用等号把它们连成等式。
4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。
5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。
6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母学生思考,充分发表自己意见,教师给予肯定。
7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a。老师小结:
引出:加法交换律(板书)。
8、小练习:填数。
3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。
4、出示书上题目,说一说,算一算。
5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。
6、你能不能再举几个例子?学生举例。
8、小练习:填数。
四、总结新知,组织练习。
2、课后练习:
(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。
(2)比较体会运算律的作用,知道凑整百。
(3)凑整百小练习。
这是实习老师讲的第一节课,课后我让她写了写本课的教学反思,教学就要在不断的反思中成长,下面是王雪飞老师的对加法运算定律的教学反思:
这堂课是第三单元的第一堂课,也是自己实习以来讲的第一堂课。这一堂课让我在各方面对孩子们都有了一种全新的认识。
首先,在课堂上,孩子们始终能够跟着老师的步伐,认真按照老师的教学思路进行观察、分析、讨论与总结,并且得出的结果还是令人惊喜的。孩子跳脱的个性并没有因是实习老师讲课而过度展现,学习态度还是十分认真的。
但是,认真的学习态度并没有完美体现在对待老师的提问上,部分孩子还是不太乐于通过举手回答问题来展现自己,整堂课举手回答问题的孩子基本上是固定的。当然,这除了与孩子自身性格相关外,也与老师的引导激励有关,在对孩子们们进行鼓励引导之后,举手情况还是会有所改善。
再者,通过这堂课,我发现自己对孩子们发现力的认识是远远不够的,讲课时,发觉孩子们在课下对于这节课的内容是有预习的,但他们的思维并没有因此而被束缚,在主题引入环节根据已有条件提问题时,孩子们能够不拘泥于课本,提出自己的问题,在表达式的提出上,先不论正确与否,更是带有明显的独创性。而且,对于这种需要发散思维的.问题孩子们明显兴趣更加浓厚。
当然,这节课也存在不少问题,在时间的把握上就并不是十分到位,虽然完成了教学任务,但明显前松后紧,时间没有用在关键。对于孩子们思维的灵活性有些招架吃力。而且,自己对于教案的掌握也并没有达到驾轻就熟的程度,对课堂氛围的带动也明显不足。总之,虽说这堂课总体感觉不至太差但与预想还是有差距的。
王雪飞老师是一个非常认真的实习老师,讲课很大方,面带微笑,但是毕竟是第一次讲课,教案不熟,重难点把握的不好,所以时间分配有些前松后紧。现在的孩子很聪明,发散思维能力比较强,所以老师有些招架不住,也出现了一些知识上的小问题,毕竟她对小学数学课本的知识系统不是很了解,出现点问题也属于正常想象。
知识与技能。
1、初步理解加法的意义,认识“+”号和“=”,能正确读出加法算式,能过操作计算5以内数的加法。
2、培养学生的观察能力、口头表达能力和实际操作能力。
通过学生操作、表达使学生经历加法的计算过程。
培养学生初步的数学交流意识,使学生积极主动地参与数学活动,获得成功体验,增强自信心。
认识“+”号和“=”,能正确读出加法算式,能过操作计算5以内数的加法。
初步理解加法的意义同时在教学中培养学生的观察能力、口头表达能力和实际操作能力。
教学课件。
一、创设情境,导入新课。
(视频展示:3个同学在做游戏,又来了l个同学,合起来是4个同学。)。
师:请你们认真观察,把你看到的跟大家说一说。谁愿意把你看到的和大家说一说?(根据学生发言,相互补充)。
师规范学生语言:有3个同学在拍球,又来了l个,合起来是4个同学。(让学生反复说)。
二、自主探究、合作学习。
(1)用3支笔与1支笔,合起来是4支笔的过程让学生同桌讨论。
师:说说一说你都看到了什么?你能边说这幅图的意思,边用手势来表示吗?把你看到的和同桌说一说。学生之间相互交流。
(2)摆一摆。(我来说,你来做)。
师:请你先拿出3个圆片,再拿出1个圆片,合起来是4个圆片。并且把你摆的过程和你的同桌交流一下。
(3)揭示加法,在算式中理解合并。
师:刚才我们一起看了同学做游戏的过程、铅笔的合并过程以及摆圆片的过程。他们都是把两种物品合并到一起,求一共是多少这样的问题----就用加法计算,算式是3+1=4。(板书:3+1=4。)。
师:你会读这个算式吗?(如果学生会,让学生尝试着读一读:3加1等于4)。
3、走进生活、解决问题。
1、看图说说算式表示的意思。(做一做第一题)。
2、讲故事,挑图片。
师:刚才同学们说得很好!为了奖励同学们,我们来做个小游戏。老师先给你们讲个故事,他说的是一张卡片的是故事,请你快速的从算式中找出那一张。
四、作业布置。
2+1=?3+1=?2+2=?1+4=?5+1=?
5、课堂小结。
一起谈谈通过这节课的学习,你有什么收获?
1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。
2、培养学生观察、比较、归纳及运算能力。
有理数加法运算律及其运用。
灵活运用运算律。
一、创设情境,引入新课。
1、小学时已学过的加法运算律有哪几条?
2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
(2)[8+(-5)]+(-4)=_______=______,8+[(-5)+(-4)]=_______=______。
二、讲授新课。
教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?
(学生回答省略)。
师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。即:a+b=b+a。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)。
讲解例3。
教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)。
三、巩固知识。
师生共同得出:解法2比较好,因为它的'运算量比较小。解法2中使用了加法交换律和加法结合律。
四、总结。
本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。
五、布置作业。
今天听了张老师的加法运算律一课,受益非浅。下面就我对这节课的一些体会。
张老师分三大块安排本节课的教学,加法交换律、加法结合律、及两者之间的比较练习。在教学加法交换律和结合律时,老师都按“情境导入—提出问题—解决问题—对比、抽象概括—实践应用”步骤教学,思路清晰、层次分明,教学重难点突出,并有助于学生掌握学习的方法。
在整节课中,张老师把练习分成了两大块:一是学习完新知后,安排了针对性的练习,这有助于学生更好地掌握本节课的重难点,使学生学得更加扎实有效;二是在比较两个加法运算定律后,安排了综合性的练习,这有助于帮助学生梳理本节课的知识、横向比较知识点,加深对知识的理解,进一步提升所学知识。
教学中张老师注重了举例、观察和讨论,让学生通过举例,经历分析、综合、抽象的过程来验证自己的想法,从中能够自己概括出加法运算律。这一学习过程,学生实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。
总的来说,张老师的整节课,教学目标落实到位,教学过程如行云流水,学生学得扎实有效;通过整节课的教学中,同时引发我以下思考:
1、情境引入,是否有效。张老师用两个不同情境引入加法交换律和加法结合律。其实以学生原有基础,对加法交换律掌握地比较好,并且能在实际学习中运用定律,教学中教师应该帮助学生概括加法交换律的意义,认识加法交换律的本质,可设计如下练习:
(88+19)+27=27+(88+19)运用加法的什么定律;
2、整堂课的教学环节有两大块是类似的,这样有助于学生掌握学习的方法,但是加法结合律是本节课的重点和难点,是不是可以适当调整教学环节,把本节课的重点更加突出,如先教学加法结合律,加法交换律的教学,可以让学生根据前面的学习方法,自己研究,总结概念。
当然,以上知识本人的一些粗浅的看法,是不是科学还有待老师们指正,批评。
教师在课堂上充分以学生为主体,精心设计丰实有效的细节,多给学生提供机会,经常通过启发性的语言,使学生感受到自己是学习的主人,增强参与的主动性,不断的思考、探索讨论、交流,在经历知识的形成过程中,不断体验成功的快乐。
82+50=50+82。
47+(30+8)=(47+30)+8。
(84+68)+32=84+(68+32)。
75+(48+25)=(75+25)+48。
【说明】:在教学中,我发现学生对三个加数进行的交换律和结合律大部分学生都存在知识空白或混淆或含糊的现象,针对这一现状,我进行了这一预设。
学生1:我发现只有两个加数的是加法交换律,有3个加数的才是加法结合律。
学生2:我发现加法结合律都有括号,而加法交换律没有括号。
【说明】:事实上,学生都是带着各自的数学现实走进课堂的。激活学生的已有认知,唤起学生的学习心向从知识的原点出发,有利于激发学生的认知热情。
讨论完毕我话峰一转将评价权抛给了学生,现在再看此题你有什么话要说?
学生1:我明白了只要有位置变了,就是加法交换律。这题虽然有三个加数,但只有48和25交换了位置,所以是运用了加法的交换律。
学生2:只要有运算顺序的改变就是加法结合律。这个等式的两边在外形上尽管都有括号,但都是先算后两个数,并没有改变运算的顺序,所以没有应用加法的交换律。
【说明】:我尽可能多给学生机会,指导思想就是立足过程,注重发展,培养学生的自信心。通过多次互动,引导学生认识自我,建立自信,激发其内在的发展动力,促进学生改进、完善学习过程,促进学生发展。
这时我再将书上的那题出示给学生做,百分之九十的同学能一下子看出,此题既有加法的交换律又有加法的结合律,且能讲出理由。既快又准地实现了双基到思维拓展的一次飞跃,避免了思维定势,形成举一反三的能力。
【反思】:本节课我凭借自己课前的巧妙的预设,将课堂的潜价值最大化――珍视预设引发的精彩生成。
怎样使学生的思维品质得到提升?怎样把个别学生的思维成果转化为全班的共同财富?开始我并没有给学生下泛泛的、肤浅的结论,而是通过由表及里、由此及彼的引导把学生的思维引向“开阔地带”。把单向的言说变成了多元的对话,在全班学生的互动中完成了对定律的阐释与理解。
今天有幸聆听了太平实验小学徐东珍老师所上的四年级下册《加法交换律和加法结合律》一课。整节课教师有意识地让学生运用已有的经验,经历运算规律的发现过程,让学生通过观察、比较和分析,初步感受运算的规律,发现规律,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与数学学习的全过程。本节课我认为主要有以下两个特点:
徐老师大胆地尝试改变教材,创意性地展开了课堂教学。徐老师抛开了教材例题的束缚,直接从一组简单的算式开始展开今天的教学。这组算式由易到难,1+2=3,1+2+3=6,1+2+3+4=10,1+2+3+4+5+6+7+8+9=45,这组算式不仅复习了原来的运算顺序,而且也激发了学生产生简便算法的需求,这时就引出需要改变加数的位置,从而抛出问题:这样的改变可以吗?接下来就进入本节课的探究之旅。这样创造性的改编教材,使本节课的研究更直接,目的更鲜明,直奔主题,不需要受外界实际情况的干扰,纯粹就是研究加数位置、运算顺序的变化。但是,缺乏了数学的来龙去脉,学生体会不到数学源于生活,用于生活的密切联系。
本节课的教学中徐老师就抓住了一个核心问题“什么变了,什么没变?”在教学加法交换律时,徐老师让学生自己举例验证前面的猜想“交换两个加数的位置,和不变”是否成立?当学生举出了一系列的等式后,徐老师让学生加以比较,这些等式都是什么变了,什么没变?由此发现加法交换律的内涵是:运算符号不变两个加数不变和不变,变的是两个加数的位置。在教学加法结合律时,老师让学生用前面探究加法交换律的方法,自主探究加法结合律,在举例验证过程中发现什么变了,什么不变?由此让学生发现加法结合律的内涵是:三个加数不变加数位置不变和不变,变的是运算顺序。在此基础上,徐老师再组织学生对这两种运算律加以比较,什么变了,什么不变?这时进一步加深了学生对这两种运算律的理解。像这样抓住核心问题导学,能够帮助学生抓住本节课的重点,突破难点,起到画龙点睛的作用。
本节课的教学中,徐老师很明显地采用了“猜想——验证——结论”这样一种探究规律的常用思想方法的指导,要是能把它板书在黑板一侧,对学生以后的学习就会起到一个引领借鉴的作用,可能效果会更好。
《加法的交换律和结合律》是人教版四年级上册第三单元的内容。在此之前,学生经过较长时间的四则运算学习,对四则运算已有较多感性认识和加法运算律已经有了一些感性认识。例如:在10以内的加法中,学生看着一个图可以列出两道加法算式;在学习笔算加法的验算时,学生已经知道调换两个加数的位置再加一遍,加得的结果不变。所以从知识层面上看,学生学习、理解运用起来比较容易。反思整个教学过程,有以下感想:
一、“情景”使学习充满兴趣。
我从现实生活出发,本节课的教学我充分利用教材所提供的“解决问题的实际情景”,让学生在真实的情景中探索学习。通过对李叔叔骑车旅行的实际问题,首先让学生亲切的感觉到知识就在我们的身边,进一步明确数学来源于生活的道理,又激发了学生的学习兴趣。
二、“体验”使学习充满乐趣。
新课程标准提出“让学生经历有效地探索过程”。因此,在探索知识形成的过程中,考虑到为学生提供了自主探索的机会,我大胆放手,让学生根据自己提出的问题,列出40+56=96、56+40=96两道算式,再组织学生观察比较两个式子的特点,唤醒了学生已有的知识经验,使学生初步感知加法运算律。随后,我又引导学生自己照样子仿写等式,运用学生自己所写的等式,再次观察、比较有什么相同点和不同点,从而感知其中的规律。在此基础上,鼓励学生用自己最喜欢的方法来表示加法的运算律,通过学生独立思考,师生交流,再次让学生说出符号和文字所表示的意义,让学生经历由数字上升到用符号、字母表示的一种抽象过程,学生在此过程中感受到加法交换律的形成,提高学生掌握能力。这个环节,为学生提供来了自主探索的时间和空间,在学生充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用字母表示规律,使学生体会到符号的间接性,从而发展了学生的符号感。
在教学加法结合律时,由于学生刚经历了加法交换律的探索过程。所以就自然而然地把刚才所用的方法迁移到加法结合律的学习上。同样以学生为主体,有意识地让学生运用已有经验,经历运算律的发现过程,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“猜测一举例验证一归纳结论一运用”这一数学学习全过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。
三、“练习”使学习充满情趣。
学数学就是要学以致用,在教学完两个运算律后我设计了层次不同的练习及时巩固了新知。第一题采用游戏的形式,既让全体学生都参与到学习中,又激发了他们的积极性,让学生在轻松愉快的气氛中巩固所学知识,锻炼思维。让学生判断(84+68)+32和84+(68+23)是否得数相等,我巧用了“上当法”,制造错误陷阱,使学生在不经意间犯错。在一直都对的情况下,思维定势让学生必然要错,然而,这样的错误对于学生来说,记忆却异常深刻,同时也使学生认识到在计算时,题目一定要仔细看清。
根据运算律进行简便计算,是以后学习的.内容,对学生来说并不难。但要让学生形成简便计算的意识,比会进行简便计算更重要。因此此处通过比赛口算45+(88+12)、(45+88)+12两道算式,让学生在比先后的过程中,萌发如何计算快的意识,其实就是运用运算律使计算简便的过程,使学生在计算中便感受到运算律的作用,为下节课学习加法简便计算教学垫下了基础。
本课不足之处:
1、在探索运算律的过程中,应该将学生举出的例子板书在黑板上,引导学生观察、比较和分析,通过多个例子,学生能更好地感受运算律。
2、通过例题和学生举例,在学生充分感知的基础上,从用符号表示规律到用字母表示规律,总结出加法结合律。在这里,学生能体会出这两种运算律,但还应该让学生再说一说运算律的含义,可能学生语言表达起来有些困难,说不清楚,但不要求孩子要一字不差的把规律说出来,只要能理解就够了,同时也能培养学生的语言表达能力。
3、最后的小故事与本课知识联系不大,可以舍去。
总之,在今后的教学中,我会不断反思,及时改进,不断提高自己的教育教学水平。
教学目标:1,让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算.
2,在探索规律的过程中发展学生的分析比较抽象概括能力,培养学生的符号感.
教者:唐荣。
明确今天的教学内容板书:运算律。
简介运算律的含义:即运算过程中发现的规律.
1,出示例题画面,由学生仔细观察画面并根据题中所提问题(跳绳的有多少人)选择相关条件并进行解答.
2,学生交流各自的解法,说说列式的理由。
板书:28+17男生跳绳人数+女生跳绳人数。
17+28女生跳绳人数+男生跳绳人数。
3,比较两式结果,总结规律。
4,由学生说出他们的发现:你还能举出这样的例子吗。
5,比较两式异同点,明确式中各部分的名称,逐步导出规律:两数相加,交换加数的位置,它们的和不变.
6,说明这样的例子举不胜举,太多太多,为了简明表示出这一规律,我们用一个字母式子表示为a+b=b+a,明确这里的a,b分别代表两个数,等号表示"不变".
二,数学加法结合律的条件(通过例题发现规律)。
1,根据例题的条件,你能求出参加活动一共有多少人吗各自列出算式:。
2,交流解题方法,明确算理。
(28+17)+2328+(17+23)。
由学生分别算出结果,并比较异同,明确虽然顺序不一样,但结果相同,说明这也是一种规律,由各人再举出例子试试,看这一规律是不是具有普遍性.
4,总结归纳这一规律,并学习用字母表示.
5,明确两规律的名称.
三,组织练习。
1,做第58页想想做做第1题,说出每一个等式各运用了什么运算定律.
2,做第2题,让学生先填一填,再说出各是怎么想的.
3,完成第4题,说出每组题中哪种方法简便,为什么。
4,完成第5题.
四,全课总结。
1,由学生说说本节课的收获.
2,教师总结及要求。
这节课我们学习加法运算中的两种运算规律,要能准确说出它们的字母表达式,并明白其含义.关于学习它有什么作用,下节课我们再作进一步研究.
教学反思:。
通过学习这节课的教学,我有这样的想法:。
1,四年级组的学生已具备一定的观察,分析,思考的能力,教学过程中要注意充分利用,引领他们去思考分析培养和提高这方面的能力.
2,课堂上留给学生自主的空间,能够易于让学生发现和理解相关知识,有利于激发和调动他们学习的兴趣.
教科书第4950页的例3例5,练习十一的第510题。
使学生理解并掌握加法结合律,能够应用加法交换律和结合律进行简便计算,培养学生分析推理的能力。
小黑板。
一、复习。
1.根据运算定律在下面的()里填上适当的数。
35+()=65+()()+147=()+274。
56+74=()+()a+200=()+()。
订正时,让学生说出是根据什么运算定律填数的。
2.下面各等式哪些符合加法交换律?
270+380=390+26030+50+70=30+70+50。
a+800=800+a。
3.四年级一班有48人,二班有50人,两个班一共有多少人?
计算完后,让学生应用加法的意义说明为什么用加法计算。
二、新课。
1.教学例3。
给上面的复习题3加上一个已知条件三班有49人,问题改为三个班一共有多少人?引出例2。
让学生读题后,指名说出已知条件和问题,教师用线段图表示出数量关系:
一班48人二班50人三班49人。
共?人。
提问:
指名说第一种解法:先把一班和二班的人数加起来,求出它们的和,再加上三班的人数。引导学生说出综合算式:(48+50)+49。强调说明,为了表明先算一班与二班人数的和,可以在48和50的外面加上小括号。
指名说出第二种解法:先把二班和三班的人数加起来,求出它们的和,再加上一班的人数。引导学生说出综合算式:48+(50+49)。强调说明,为了表示先算二班与三班人数的和,要在50和49的外面加上小括号。
提问:
这两种解法的结果怎样?
用什么符号连接这两个算式?(板书:(48+50)+49=48+(50+49))。
比较一下等号两边的算式,有什么相同点?(都是三个数相加,左、右两边的三个数相同。)。
有什么不同点?(加的顺序不同,等号左边先把48和50相加,再同49相加;等号右边先把50和49相加,再同48相加。)。
引导学生回答后,教师归纳整理:48、50和49这三个数相加,先把48和50相加,再同49相加;或者先把50和49相加,再同48相加,它们的得数一样,也就是和不变。
2.再出两组算式,引导学生比较,加以概括。
(1)教师:我们再观察一组算式,看一看它们有什么样的.关系。
板书:(12+13)+1412+(13+14)。
先让学生算一算,看两个算式的结果怎样,用什么符号连接。这组算式说明了什么。
学生回答后,教师归纳整理:12、13和14这三个数相加,先把12和13相加,再同14相加;或者先把13和14相加,再同12相加,它们的和不变。
(2)再观察一组算式,看一看它们有什么样的关系。
(320+150+230320+(150+230)。
让学生说一说这组算式说明了什么?
3.比较三个等式,突出下面三点:
(2)这三个等式中,等号左边三个算式有什么共同点?(加的顺序相同,都是先把前两个数相加,再同第三个数相加。)。
(3)再看右边三个算式有什么共同点?(加的顺序相同,都是先把后两个数据相加,再同第一个数相加。)。
提问:
每个等式中等号左边的算式和等号右边的算式,加的顺序相同吗?但它们的和怎么样?
谁能把我们发现的规律完整地说一说?
让几个学生试说后,教师完整地叙述一遍,说明这一规律叫做规律叫做加法结合律。再看一看教科书第49页的结语。
提问:
如果用字母a、b、c分别表示三个中数,怎样表示加法的结合律呢?(学生回答后,板书:(a+b)+c=a+(b+c)。
等号左边(a+b)+c表示什么意思?(先把前面两个数相加,再同第三个数相加。)。
等号右边a+(b+c)表示什么意思?(先把后面两个数相加,再同第一个数相加。)。
5.练习。
完成第50页上面的做一做题目。让学生把数填在书上,订正时,让学生说一说根据哪个运算定律填写的。
(1)教学例4。
出示:480+325+75。
让学生想一想,怎样计算比较简便?要应用什么运算定律?共同讨论。
教师板书:480+325+75。
=480+400计算时方框里的这一步。
=880可以省略不写。
(2)教学例5。
出示:325+480+75。
让学生想一想,怎样计算比较简便?要应用什么运算定律?
学生试算后,讨论订正。
教师板书:325+480+75。
=325+75+480指出应用加法交换律。
=400+480。
=880。
(3)比较例4、例5。
让学生说一说例4、例5在应用运算定律方面有什么不同?
教师小结:例4没有调换加数的位置,只应用加法结合律,先把后面两个数相加就可以使计算简便。而例5,要使325和75相加,必须先应用加法交换律把75调到480的前面,再应用加法结合律把325和75相加才能使计算简便。
然后启发学生说出例5也可以应用加法交换律把325调到480的后面,再应用加法结合律把325和75相加,使计算简便。
提问:
想一想,过去我们学过的哪些计算中应用了加法结合律?
如果学生想不出,再指出:
如9+8怎么想?9+8=9+(1+7)=(9+1)+7=17。
36+48怎么想?36+(40+8)=(36+40)+8=76+8=84。
应用加法结合律不仅可以做口算加法,还能使一些计算简便。
(4)做第50页下面的做一做。
让学生自己做,订正时,让学生说出是怎样应用运算定律的。
三、课堂练习。
1.做练习十一的第5、6、7题,做完后共同订正。
(1)第5题,要注意让学生弄清根据哪个运算定律来填数。
(2)第6题,要注意a+(20+9)=(a+20)+9这道题,看学生是否能判断出,这道题虽然有字母又有数目,但它仍符合结合律。
(3)第7题,要求学生先两道题说一说是怎样应用加法结合律的。如37+8,先把37分成30+7,应用结合律可以先把7+8相加,再和30相加。
四、布置作业。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:https://www.miekuo.com/fanwen/moban/308321.html